Câu hỏi:

28/10/2025 175 Lưu

PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.

Cho biết máy bay \(A\) đang bay với vectơ vận tốc \(\vec a = \left( {300;200;400} \right)\) (đơn vị: km/h). Máy bay \(B\) bay cùng hướng và có tốc độ gấp ba lần tốc độ của máy bay \(A\). (làm tròn đến hàng đơn vị)

Cho biết máy bay \(A\) đang bay v (ảnh 1)

Tính tốc độ của máy bay \(B\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có: \[3\vec a = \vec b \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{3.300 = x}\\{3.200 = y}\\{3.400 = z}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 900}\\{y = 600}\\{z = 1200}\end{array} \Rightarrow \vec b = \left( {900;600;1200} \right)} \right.} \right.\]

Tốc độ của máy bay \(B\) là: \(\left| {\vec b} \right| = \sqrt {{{900}^2} + {{600}^2} + {{1200}^2}}  \approx 1615,55\;\)(km/h)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(\vec P = m\vec g\) suy ra \(P = mg = 20.10 = 200\left( {{\rm{\;N}}} \right)\).

Vậy trọng lực tác dụng lên em bé là 200 N.

Ta có \(A = P \cdot s \cdot \cos \left( {\vec P,\vec s} \right) = 200 \cdot 2 \cdot \cos {80^ \circ } \approx 69\) (J).

Vậy công sinh bởi trọng lực \(\vec P\) khi em bé trượt hết chiều dài cầu trượt là 306 J.

Lời giải

a)

S

b)

Đ

c)

S

d)

Đ

(a) Đúng: Áp dụng công thức tính độ dài đoạn thẳng ta tính được

\(AB = CD = \sqrt {10} ;AC = BD = \sqrt {13} ;AD = BC = \sqrt 5 \)

Vậy tứ diện \(ABCD\) có các cạnh đối đôi một bằng nhau

(b) Sai: Ta có: \(\overrightarrow {AB}  = \left( { - 1;0;3} \right),\overrightarrow {CD}  = \left( { - 1;0; - 3} \right)\). Gọi \(\varphi \) là góc giữa \(AB\) và \(CD\)

\(\cos \varphi  = \cos \left( {\overrightarrow {AB} ,\overrightarrow {CD} } \right) = \frac{{\left| { - 8} \right|}}{{\sqrt {10} .\sqrt {10} }} = \frac{4}{5}\)

Vậy góc giữa \(AB\) và \(CD\) là \(\varphi  = \arccos 0,8\)

(c) Sai: Lấy \[I\] trung điểm của \(AB,J\) là trung điểm của \(CD\)

\(\Delta ACD = \Delta BCD\)(c.c.c) nên 2 đường trung tuyến tương ứng \(AJ = BJ\).

Vậy \(\Delta AJB\) cân đỉnh \(J\) nên \[IJ\] vuông góc với \(AB\) tại \(I\).

Tương tự \(\Delta ICD\) cân đỉnh \[I\] nên \[IJ\] vuông góc với \(CD\) tại \(J\).

Vậy \[IJ\] là đường vuông góc chung của \(AB\) và \(CD\) ta được \(I\left( {\frac{3}{2};1;\frac{3}{2}} \right)\) và \(J\left( {\frac{3}{2}; - 1;\frac{3}{2}} \right)\)

Vậy khoảng cách giữa \(AB\) và \(CD\) chính là độ dài đoạn vuông góc chung \(IJ\).

\(d\left( {AB;CD} \right) = II = \sqrt {{{\left( {\frac{3}{2} - \frac{3}{2}} \right)}^2} + {{\left[ {1 - \left( { - 1} \right)} \right]}^2} + {{\left( {\frac{3}{2} - \frac{3}{2}} \right)}^2}}  = 2\)

(d) Đúng: Theo kết quả câu 3. Lấy \[G\] là trung điểm của \(IJ\) ta được:

\(GA = GB\)vì \(\Delta GAB\) cân đỉnh \(G\);\(GC = GD\) vì \(\Delta GCD\) cân đỉnh \(G\)

Mà \(GA = \sqrt {G{I^2} + I{A^2}} \) mà \(GI = GJ,IA = ID\) và \(GC = \sqrt {G{J^2} + I{D^2}} \)

Do đó \(GA = GB = GC = GD = R\)

Do đó \[G\]: Tâm mặt cầu ngoại tuyến khối tứ diện \(ABCD:G\left( {\frac{3}{2};0;\frac{3}{2}} \right)\) và bán kính của mặt cầu là \(R = GA = \frac{{\sqrt {14} }}{2}\) (\[G\]: cũng chính là trọng tâm của khối tứ diện gần đều \(ABCD\))

Câu 5

A.  \(10\).                    
B. \(16\).                    
C.  \(12\).              
D.  \(8\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Hai vectơ\[\overrightarrow x ;\overrightarrow y \]không cùng phương.                                                  
B. Hai vectơ\[\overrightarrow x ;\overrightarrow z \]cùng phương.              
C. Ba vectơ\[\overrightarrow x ;\overrightarrow y ;\overrightarrow z \]đồng phẳng.                               
D. Hai vectơ\[\overrightarrow y ;\overrightarrow z \]cùng phương.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(m = - 1\,;\,M = 0\).                                
B. \(m = - 5\,;\,M = 0\).              
C. \(m = - 5\,;\,M = - 1\).                             
D. \(m = - 2\,;\,M = 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP