Cho một bờ hồ hình bán nguyệt có bán kính bằng \(2\,\,{\rm{km}}\), đường kính \(PR\)như hình vẽ sau :

Từ điểm \(P\)anh Tài chèo một chiếc thuyền với vận tốc \(3\,\,{\rm{km/h}}\) đến điểm \(Q\) trên bờ hồ, rồi chạy bộ dọc theo thành hồ đến vị trí \(R\) với vận tốc \(6\,\,{\rm{km/h}}\). Thời gian chậm nhất mà anh Tài di chuyển từ \(P\) đến \(R\) là bao nhiêu? (thời gian tính bằng phút).
Cho một bờ hồ hình bán nguyệt có bán kính bằng \(2\,\,{\rm{km}}\), đường kính \(PR\)như hình vẽ sau :

Từ điểm \(P\)anh Tài chèo một chiếc thuyền với vận tốc \(3\,\,{\rm{km/h}}\) đến điểm \(Q\) trên bờ hồ, rồi chạy bộ dọc theo thành hồ đến vị trí \(R\) với vận tốc \(6\,\,{\rm{km/h}}\). Thời gian chậm nhất mà anh Tài di chuyển từ \(P\) đến \(R\) là bao nhiêu? (thời gian tính bằng phút).
Câu hỏi trong đề: Bộ 20 đề thi Giữa kì 1 Toán 12 có đáp án !!
Quảng cáo
Trả lời:
Đặt \(\widehat {QPR} = \varphi \left( {rad} \right)\), \(\,\,\varphi \in \left( {0\,;\,\,\frac{\pi }{2}} \right)\).

Ta có \(\Delta PQR\) vuông tại \(Q\) \( \Rightarrow PQ = PR.\cos \varphi = 4\cos \varphi \).
Mà \(\widehat {QOR} = 2\widehat {QPR} = 2\varphi \).
Độ dài cung tròn \(QR = 2.2\varphi = 4\varphi \).
Thời gian anh Tài chèo từ \(P\) đến \(Q\) là: \(\frac{{4\cos \varphi }}{3}\) (giờ).
Thời gian anh Tài chèo từ \(Q\) đến \(R\) là: \(\frac{{4\varphi }}{6} = \frac{{2\varphi }}{3}\) (giờ).
Tổng thời gian anh Tài di chuyển từ \(P\) đến \(R\) là: \(t = \frac{{4\cos \varphi }}{3} + \frac{{2\varphi }}{3}\,\,\left( {0 < \varphi < \frac{\pi }{2}} \right)\).
Xét hàm số \(t\left( \varphi \right) = \frac{{4\cos \varphi }}{3} + \frac{{2\varphi }}{3}\) với \(\,\,\varphi \in \left( {0\,;\,\,\frac{\pi }{2}} \right)\).
\(t'\left( \varphi \right) = \frac{1}{3}\left( { - 4\sin \varphi + 2} \right)\), \(\,\,\varphi \in \left( {0\,;\,\,\frac{\pi }{2}} \right)\).
\(t'\left( \varphi \right) = 0,\,\,\varphi \in \left( {0\,;\,\,\frac{\pi }{2}} \right)\)
\( \Leftrightarrow \sin \varphi = \frac{1}{2},\,\,\varphi \in \left( {0\,;\,\,\frac{\pi }{2}} \right)\)
\( \Leftrightarrow \varphi = \frac{\pi }{6}\).
Bảng biến thiên

Vậy thời gian chậm nhất mà anh Tài di chuyển từ \(P\) đến \(R\)là \(t\left( {\frac{\pi }{6}} \right) = \frac{{2\sqrt 3 }}{3} + \frac{\pi }{9} \approx 1,5\)(giờ) hay 90 phút.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Thay vì trực tiếp tối đa \(R(x)\), ta có thể tối đa \({R^2}(x)\) (vì hàm căn là tăng):
\({R^2}(x) = 4x(h - x) = 4\left( {hx - {x^2}} \right)\)
Tính đạo hàm: \[{\left( {{R^2}(x)} \right)^\prime } = 4(h - 2x)\]
Giải \({\left( {{R^2}} \right)^\prime } = 0\): \(h - 2x = 0 \Rightarrow x = \frac{h}{2}.\)
Lập bảng biến thiên ta có \(x = \frac{h}{2}\) là điểm cực đại.
Vậy lỗ phun nên đặt ở độ cao \(x = \frac{h}{2}\) để tầm xa \(R\) của tia nước đạt tối đa.
Lời giải
|
a) |
Đ |
b) |
S |
c) |
S |
d) |
Đ |
a– Đúng, b – Sai, c – sai, d – đúng
Đúng: Gọi \(x\,\,\left( {{\rm{km}}} \right)\) là độ dài quãng đường \(BD\); \(8 - x\,\,\left( {{\rm{km}}} \right)\) là độ dài quãng đường \(CD\).Sai: Thời gian chèo thuyền trên quãng đường \(AD = \sqrt {{x^2} + 9} \) là: \(\frac{{\sqrt {{x^2} + 9} }}{6}\)
Thời gian chạy trên quãng đường \(DB\) là: \(\frac{{8 - x}}{8}\) Sai: Tổng thời gian di chuyển từ \(A\) đến \(B\) là \(f\left( x \right) = \frac{{\sqrt {{x^2} + 9} }}{6} + \frac{{8 - x}}{8}\)
Xét hàm số \(f\left( x \right) = \frac{{\sqrt {{x^2} + 9} }}{6} + \frac{{8 - x}}{8}\) trên khoảng \(\left( {0;\,\,8} \right)\)
Ta có \(f'\left( x \right) = \frac{x}{{6\sqrt {{x^2} + 9} }} - \frac{1}{8}\); \(f'\left( x \right) = 0 \Leftrightarrow 3\sqrt {{x^2} + 9} = 4x \Leftrightarrow x = \frac{9}{{\sqrt 7 }}\)
Bảng biến thiên

Đúng: Dựa vào bảng biến thiên ta thấy thời gian ngắn nhất để di chuyển từ \(A\) đến \(B\) là \(1 + \frac{{\sqrt 7 }}{8}\)Vậy khoảng thời gian ngắn nhất để người đàn ông đến \(B\) là \(1 + \frac{{\sqrt 7 }}{8} \approx {1^{\rm{h}}}20'\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.




