Câu hỏi:

28/10/2025 20 Lưu

Trên đồ thị hàm số \(y = \frac{{2x - 1}}{{x + 4}}\) có bao nhiêu điểm có tọa độ nguyên?              

A. \(4.\)                       
B. \(6.\)                       
C. \(0.\)      
D. \(2.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Chọn B

\(\left( C \right):y = \frac{{2x - 1}}{{x + 4}} = 2 - \frac{9}{{x + 4}}\)

\(M\left( {x;y} \right) \in \left( C \right)\)có tọa độ nguyên khi \(\left\{ \begin{array}{l}x \in \mathbb{Z}\\y \in \mathbb{Z}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \in \mathbb{Z}\\9 \vdots \left( {x + 4} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \in \mathbb{Z}\\\left[ \begin{array}{l}x + 4 = 9 \Rightarrow x = 5;y = 1\\x + 4 =  - 9 \Rightarrow x =  - 13;y = 3\\x + 4 = 3 \Rightarrow x =  - 1;y =  - 1\\x + 4 =  - 3 \Rightarrow x =  - 7;y = 5\\x + 4 = 1 \Rightarrow x =  - 3;y =  - 7\\x + 4 =  - 1 \Rightarrow x =  - 5;y = 11\end{array} \right.\end{array} \right.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Sau \(t\) phút, trong bể chứa \(\left( {50t + 150} \right)\)lít nước và \(20t\)gam chất khử trùng.

Suy ra nồng độ chất khử trùng trong bể sau \(t\) phút là \(f\left( t \right) = \frac{{20t}}{{50t + 150}}\)gam/lít.

Khảo sát sự biến thiên hàm số \(f\left( t \right) = \frac{{20t}}{{50t + 150}}\), \(t \ge 0\).

Ta có: \(f'\left( t \right) = \frac{{3000}}{{{{\left( {50t + 150} \right)}^2}}} > 0,\forall t \ge 0\)

\(\mathop {\lim }\limits_{t \to  + \infty } f\left( t \right) = \mathop {\lim }\limits_{t \to  + \infty } \frac{{20t}}{{50t + 150}} = \mathop {\lim }\limits_{t \to  + \infty } \frac{{20}}{{50 + \frac{{150}}{t}}} = \frac{2}{5} = 0,4\)

Bảng biến thiên

Một bể ban đầu chứa \(150\) lít nước. Sau đó, cứ (ảnh 2)

Dựa vào BBT ta thấy giá trị \(f\left( t \right)\) tăng theo \(t\) nhưng không vượt ngưỡng \(0,4\)gam/lít.

Vậy \(p = 0,4\).

Lời giải

a)

S

b)

Đ

c)

Đ

d)

S

 

Từ BBT, ta thấy hàm số \(y = f(x)\) không xác định tại \(x = 2\) nên \(D = \mathbb{R}\backslash {\rm{\{ }}2\} \).Từ BBT, ta thấy hàm số \(y = f(x)\) chỉ đạt cực tiểu tại \(x = 1\) và \({y_{CT}} = 0\), nên hàm số chỉ có một điểm cực trị.Từ BBT, ta thấy giá trị nhỏ nhất của hàm số bằng 0 đạt tại \(x = 1\).Từ BBT, ta có \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = 4;\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) = 3;\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) =  + \infty \) nên đồ thị hàm số có hai đường tiệm cận ngang là \(y = 3;y = 4\) và một đường tiệm cận đứng là \(x = 2\).

Vậy đồ thị hàm số có 3 đường tiệm cận.

Câu 6

A. \[4\].                     
B. \[3\].                     
C. \[1\].     
D. \[2\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP