Một nhà phân tích thị trường làm việc cho một công ty sản xuất thiết bị gia dụng nhận thấy rằng nếu công ty sản xuất và bán \(x\) chiếc máy xay sinh tố hằng tháng thì lợi nhuận thu được (nghìn đồng) là \(P(x) = - 0,3{x^3} + 36{x^2} + 1800x - 48000.\) Lợi nhuận lớn nhất mà công ty có thể thu được khi sản xuất đúng bao nhiêu chiếc máy xay sinh tố mỗi tháng.
Câu hỏi trong đề: Bộ 20 đề thi Giữa kì 1 Toán 12 có đáp án !!
Quảng cáo
Trả lời:
Xét hàm số \(y = P(x) = - 0,3{x^3} + 36{x^2} + 1800x - 48000,x \ge 0\).
Ta có: \(y' = P'(x) = - 0,9{x^2} + 72x + 1800;y' = 0 \Leftrightarrow x = 100\)
\(\mathop {\lim }\limits_{x \to + \infty } P(x) = - \infty \).
Bảng biến thiên:

Do đó hàm số đồng biến trên nửa khoảng \([0;100)\) và nghịch biến trên khoảng \((100; + \infty )\).
Tại \(x = 100\), hàm số đạt cực đại và .
Vậy, lợi nhuận lớn nhất mà công ty có thể thu được là (nghìn đồng), tức là 192 triệu đồng, đạt được khi sản xuất đúng 100 chiếc máy xay sinh tố mỗi tháng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
![Cho một tấm bìa hình vuông có cạnh \[2m\]. Từ t (ảnh 3)](https://video.vietjack.com/upload2/quiz_source1/2025/10/19-1761639716.png)
Gọi độ dài cạnh đáy của hình chóp là \(x\left( m \right)\). Do \(MN < IJ = \sqrt 2 \Rightarrow x \in \left( {0;\sqrt 2 } \right)\).
Ta có: \(OK = \frac{x}{2};OA = \frac{{AC}}{2} = \sqrt 2 \Rightarrow SK = AK = \sqrt 2 - \frac{x}{2}\).
Do vậy: \(SO = \sqrt {S{K^2} - O{K^2}} = \sqrt {{{\left( {\sqrt 2 - \frac{x}{2}} \right)}^2} - \frac{{{x^2}}}{4}} = \sqrt {2 - \sqrt 2 x} \).
Khi đó thể tích khối chóp là: \(V = \frac{1}{3}{x^2}\sqrt {2 - \sqrt 2 x} \).
Xét \(f\left( x \right) = \frac{1}{3}{x^2}\sqrt {2 - \sqrt 2 x} ,\,\left( {x \in \left( {0;\sqrt 2 } \right)} \right)\), ta có:
\(f'\left( x \right) = \frac{1}{3}\left( {2x\sqrt {2 - \sqrt 2 x} - {x^2}\frac{{\sqrt 2 }}{{2\sqrt {2 - \sqrt 2 x} }}} \right) = \frac{1}{3}\left( {\frac{{4x\left( {2 - \sqrt 2 x} \right) - \sqrt 2 {x^2}}}{{2\sqrt {2 - \sqrt 2 x} }}} \right) = \frac{{8x - 5\sqrt 2 {x^2}}}{{3\left( {2\sqrt {2 - \sqrt 2 x} } \right)}}\)
\(f'\left( x \right) = 0 \Leftrightarrow 8x - 5\sqrt 2 {x^2} = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \frac{{4\sqrt 2 }}{5}\end{array} \right.\)
Ta có bảng biến thiên:
![Cho một tấm bìa hình vuông có cạnh \[2m\]. Từ t (ảnh 4)](https://video.vietjack.com/upload2/quiz_source1/2025/10/20-1761639727.png)
Lời giải
Sau \(t\) phút, trong bể chứa \(\left( {50t + 150} \right)\)lít nước và \(20t\)gam chất khử trùng.
Suy ra nồng độ chất khử trùng trong bể sau \(t\) phút là \(f\left( t \right) = \frac{{20t}}{{50t + 150}}\)gam/lít.
Khảo sát sự biến thiên hàm số \(f\left( t \right) = \frac{{20t}}{{50t + 150}}\), \(t \ge 0\).
Ta có: \(f'\left( t \right) = \frac{{3000}}{{{{\left( {50t + 150} \right)}^2}}} > 0,\forall t \ge 0\)
\(\mathop {\lim }\limits_{t \to + \infty } f\left( t \right) = \mathop {\lim }\limits_{t \to + \infty } \frac{{20t}}{{50t + 150}} = \mathop {\lim }\limits_{t \to + \infty } \frac{{20}}{{50 + \frac{{150}}{t}}} = \frac{2}{5} = 0,4\)
Bảng biến thiên

Dựa vào BBT ta thấy giá trị \(f\left( t \right)\) tăng theo \(t\) nhưng không vượt ngưỡng \(0,4\)gam/lít.
Vậy \(p = 0,4\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![Cho một tấm bìa hình vuông có cạnh \[2m\]. Từ t (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/17-1761639676.png)



