Một giáo viên theo dõi sự tiến bộ của học sinh qua thang đo điểm, được mô hình hóa bằng hàm số \(f\left( x \right) = {x^3} + a{x^2} + bx + c\) với \(a,b,c\) là các hệ số. Trong đó \(x\;\left( {0 \le x \le 9,x \in \mathbb{N}} \right)\) là số tháng kể từ đầu năm học và \(f\left( x \right)\) là điểm trong tháng thứ \(x\). Qua theo dõi, giáo viên ghi nhận tháng đầu tiên học sinh đạt 19 điểm, sau đó giảm trong tháng thứ hai và đến tháng thứ ba học sinh đạt mức điểm thấp nhất trong năm học là 3 điểm. Kể từ tháng thứ ba trở đi, điểm của học sinh tăng lên. Tính điểm của học sinh đó ở tháng thứ sáu.
Câu hỏi trong đề: Bộ 20 đề thi Giữa kì 1 Toán 12 có đáp án !!
Quảng cáo
Trả lời:
Dựa vào đề bài ta có hệ phương trình: \(\left\{ \begin{array}{l}f\left( 1 \right) = 19\\f'\left( 3 \right) = 0\\f\left( 3 \right) = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a + b + c = 28\\6a + b = - 27\\9a + 3b + c = - 24\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - 3\\b = - 9\\c = 30\end{array} \right.\).
\( \Rightarrow f\left( x \right) = {x^3} - 3{x^2} - 9x + 30 \Rightarrow f\left( 6 \right) = 84\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Tốc độ tăng trưởng của virut được tính theo hàm số \(y = p'\left( t \right) = \frac{{1120.{{\rm{e}}^{0,2t}}}}{{{{\left( {{{\rm{e}}^{0,2t}} + 7} \right)}^2}}}\), \(t \ge 0\).
Xét hàm số \(y = g\left( t \right) = \frac{{1120.{{\rm{e}}^{0,2t}}}}{{{{\left( {{{\rm{e}}^{0,2t}} + 7} \right)}^2}}}\), có \(g'\left( t \right) = \frac{{224.{{\rm{e}}^{0,2t}}\left( {7 - {{\rm{e}}^{0,2t}}} \right)}}{{{{\left( {{{\rm{e}}^{0,2t}} + 7} \right)}^3}}}\).
\(g'\left( t \right) = 0 \Leftrightarrow 7 - {e^{0,2t}} = 0 \Leftrightarrow t = 5\ln 7 \approx 9,7\).
Ta có bảng dấu của \(g'\left( t \right)\) như sau:
![]()
Dựa vào bảng trên ta thấy tốc độ tăng trưởng của virut sẽ đạt lớn nhất ở ngày thứ 10.
Lời giải
Đăt \(OA = x \Rightarrow AB = 2x\) (\(0 < x < 5\)).
\( \Rightarrow AD = \sqrt {O{D^2} - O{A^2}} = \sqrt {25 - {x^2}} \).
Diện tích hình chữ nhật \(ABC{\rm{D}}\) là \(S = AB.AD = 2x\sqrt {25 - {x^2}} \).
Xét hàm số: \(f\left( x \right) = 2x\sqrt {25 - {x^2}} \) trên \(\left( {0;5} \right)\), ta có
\(f'\left( x \right) = 2\sqrt {25 - {x^2}} - \frac{{2{x^2}}}{{\sqrt {25 - {x^2}} }}\).
\(f'\left( x \right) = 0 \Leftrightarrow \frac{{50 - 4{x^2}}}{{\sqrt {25 - {x^2}} }} = 0 \Leftrightarrow 50 - 4{x^2} = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{{5\sqrt 2 }}{2} \in (0;5)}\\{x = \frac{{ - 5\sqrt 2 }}{2} \notin (0;5)}\end{array}} \right.\).
Bảng biến thiên

Vậy diện tích lớn nhất của tấm nhôm hình chữa nhật là \(S = 25\) khi \(x = \frac{{5\sqrt 2 }}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


