Nồng độ \(C\) của một hoá chất sau \(t\) giờ tiêm vào cơ thể được xác định bởi công thức \(C\left( t \right) = \frac{{3t}}{{27 + {t^3}}}\) với \(t \ge 0\). Sau khoảng bao nhiêu giờ tiêm thì nồng độ của hoá chất trong máu là lớn nhất? (làm tròn kết quả đến hàng phần trăm)

Quảng cáo
Trả lời:
Ta có \(C'\left( t \right) = \frac{{3\left( {27 + {t^3}} \right) - 3t.3{t^2}}}{{{{\left( {27 + {t^3}} \right)}^2}}} = \frac{{81 - 6{t^3}}}{{{{\left( {27 + {t^3}} \right)}^2}}}\).
\(\left\{ \begin{array}{l}C'\left( t \right) = 0\\t \ge 0\end{array} \right. \Leftrightarrow t = \frac{3}{{\sqrt[3]{2}}}\).
Ta có bảng biến thiên

Do đó ở thời điểm \(\frac{3}{{\sqrt[3]{2}}} \approx 2,38\) giờ thì nồng độ của hoá chất trong máu là lớn nhất.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Tốc độ tăng trưởng của virut được tính theo hàm số \(y = p'\left( t \right) = \frac{{1120.{{\rm{e}}^{0,2t}}}}{{{{\left( {{{\rm{e}}^{0,2t}} + 7} \right)}^2}}}\), \(t \ge 0\).
Xét hàm số \(y = g\left( t \right) = \frac{{1120.{{\rm{e}}^{0,2t}}}}{{{{\left( {{{\rm{e}}^{0,2t}} + 7} \right)}^2}}}\), có \(g'\left( t \right) = \frac{{224.{{\rm{e}}^{0,2t}}\left( {7 - {{\rm{e}}^{0,2t}}} \right)}}{{{{\left( {{{\rm{e}}^{0,2t}} + 7} \right)}^3}}}\).
\(g'\left( t \right) = 0 \Leftrightarrow 7 - {e^{0,2t}} = 0 \Leftrightarrow t = 5\ln 7 \approx 9,7\).
Ta có bảng dấu của \(g'\left( t \right)\) như sau:
![]()
Dựa vào bảng trên ta thấy tốc độ tăng trưởng của virut sẽ đạt lớn nhất ở ngày thứ 10.
Lời giải
|
a) |
Đ |
b) |
Đ |
c) |
S |
d) |
Đ |
Ta có \(y = \frac{{ - {x^2} + x + 1}}{{x + 1}} = - x + 2 - \frac{1}{{x + 1}}\) có đạo hàm \(y' = \frac{{ - x - 2x}}{{{{\left( {x + 1} \right)}^2}}} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = - 2}\end{array}} \right.\)
Khi đó ta có bảng biến thiên:

(a) Đúng: Hàm số đồng biến trên mỗi khoảng khoảng \(\left( { - 2, - 1} \right)\) và \(\left( { - 1,0} \right)\)
(b) Đúng: Hàm số có hai điểm cực trị.
(c) Sai: Mặt khác \(y = 0 \Leftrightarrow - {x^2} + x + 1 = 0\,\,\,\left( * \right)\)
Vậy phương trình \((*)\) luôn có hai nghiệm phân biệt. Hay \((C)\) luôn cắt \(Ox\) tại hai điểm phân biệt.
(d) Đúng: Tiệm cận xiên của đồ thị là \(y = - x + 2\) nên đi qua điểm \(A\left( {1;2} \right)\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


