Khi chất thải hữu cơ được đổ vào một cái ao, quá trình ôxy hóa xảy ra sẽ làm giảm hàm lượng ôxy trong nước. Tuy nhiên, theo thời gian, tự nhiên sẽ phục hồi lại mức ôxy về giá trị bình thường. Trong đồ thị kèm theo, \(P(t)\) cho biết phần trăm hàm lượng ôxy (so với mức bình thường) sau \(t\) ngày kể từ khi chất thải được đổ vào ao.
Giả sử hàm số cho hàm lượng ôxy là \(P(t) = 100\frac{{{t^2} + 10t + 100}}{{{t^2} + 20t + 100}}\)(\(\% \)mức bình thường), \({\rm{t}} \ge {\rm{0}}{\rm{. }}\)

Khi đó tọa độ của điểm \(P\left( {a;b} \right)\) trên đồ thị là điểm cực trị của đồ thị hàm số \(P(t)\). Tính \(a + b\)?
Khi chất thải hữu cơ được đổ vào một cái ao, quá trình ôxy hóa xảy ra sẽ làm giảm hàm lượng ôxy trong nước. Tuy nhiên, theo thời gian, tự nhiên sẽ phục hồi lại mức ôxy về giá trị bình thường. Trong đồ thị kèm theo, \(P(t)\) cho biết phần trăm hàm lượng ôxy (so với mức bình thường) sau \(t\) ngày kể từ khi chất thải được đổ vào ao.
Giả sử hàm số cho hàm lượng ôxy là \(P(t) = 100\frac{{{t^2} + 10t + 100}}{{{t^2} + 20t + 100}}\)(\(\% \)mức bình thường), \({\rm{t}} \ge {\rm{0}}{\rm{. }}\)

Khi đó tọa độ của điểm \(P\left( {a;b} \right)\) trên đồ thị là điểm cực trị của đồ thị hàm số \(P(t)\). Tính \(a + b\)?
Câu hỏi trong đề: Bộ 20 đề thi Giữa kì 1 Toán 12 có đáp án !!
Quảng cáo
Trả lời:
Ta có: \(P\prime (t) = \frac{{(2t + 10)\left( {{t^2} + 20t + 100} \right) - (2t + 20)\left( {{t^2} + 10t + 100} \right)}}{{{{\left( {{t^2} + 20t + 100} \right)}^2}}}\)
Khi đó \({P^\prime }(t) = 0 \Leftrightarrow (2t + 10)\left( {{t^2} + 20t + 100} \right) - (2t + 20)\left( {{t^2} + 10t + 100} \right) = 0\)
\( \Rightarrow 10{t^2} - 1000 = 0 \Rightarrow {t^2} = 100 \Rightarrow t = 10\quad (t \ge 0)\)
Lập bảng biến thiên ta có \(t = 10\) là điểm cực tiểu của hàm số
Thay \(t = 10\) vào \(P(t)\): \(P(10) = 100\frac{{{{10}^2} + 10 \cdot 10 + 100}}{{{{10}^2} + 20 \cdot 10 + 100}} = 100\frac{{100 + 100 + 100}}{{100 + 200 + 100}} = 100\frac{{300}}{{400}} = 75.\)
Vậy điểm \(P\) có tọa độ \((10;75)\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Ta có: \(A\left( {0;0;5} \right),B\left( {6;7;1} \right),C\left( {5;0;2} \right) \Rightarrow \overrightarrow {AB} = \left( {6;7; - 4} \right),\overrightarrow {AC} = \left( {5;0; - 3} \right),\overrightarrow {BC} = \left( { - 1; - 7;1} \right)\).
\(\left[ {\overrightarrow {AC} ,\overrightarrow {AB} } \right] = \left( {21;2;35} \right)\); \(AB = \sqrt {101} \); \(AC = \sqrt {34} \); \(BC = \sqrt {51} \).
\({S_{\Delta ABC}} = \frac{1}{2}\left| {\left[ {\overrightarrow {AC} ,\overrightarrow {AB} } \right]} \right| = \frac{{\sqrt {{{21}^2} + {2^2} + {{35}^2}} }}{2} = \frac{{\sqrt {1670} }}{2}\).
Bán kính đường tròn ngoại tiếp tam giác \(ABC\) bằng: \(R = \frac{{AB.AC.BC}}{{4{S_{\Delta ABC}}}} = \frac{{\sqrt {101} .\sqrt {34} .\sqrt {51} }}{{4.\frac{{\sqrt {1670} }}{2}}} = \frac{{17\sqrt {253005} }}{{1670}} \approx 5,12\).
\(\cos \widehat C = \frac{{A{C^2} + B{C^2} - A{B^2}}}{{2.AC.BC}} = - \frac{{4\sqrt 6 }}{{51}}\). Suy ra \(\widehat C \approx 1,7641 \Rightarrow \widehat A + \widehat B \approx \pi - 1,7641 \approx 1,3775\).
Suy ra số đo cung \(ACB\) bằng \(2\left( {\widehat A + \widehat B} \right) \approx 2,755 = \alpha \)
Suy ra độ dài cung bằng \(R.\alpha \approx 14,1056 \approx 14\left( m \right)\).
Lời giải
Doanh thu khi nhà máy \(A\) bán hết \(x\) tấn sản phẩm cho nhà máy \(B\) là: \(x.P\left( x \right) = x\left( {45 - 0,001{x^2}} \right) = 45x - 0,001{x^3}\).
Lợi nhuận thu được là: \(L\left( x \right) = 45x - 0,001{x^3} - \left( {100 + 30x} \right)\)\( = - 0,001{x^3} + 15x - 100\).
Ta có: \(L'\left( x \right) = - 0,003{x^2} + 15 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x \approx 70,7\,\,\,}\\{x \approx - 70,7}\end{array}} \right.\)
Bảng biến thiên:

Ta có: \(L\left( {70} \right) = 607\), \(L\left( {71} \right) = 607,089 > L\left( {70} \right)\)
Như vậy, nhà máy \(A\) cần bán \(71\) tấn sản phẩm cho nhà máy \(B\) mỗi tháng để lợi nhuận thu được là lớn nhất.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

