Xí nghiệp \(A\) sản xuất độc quyền một loại sản phẩm. Biết rằng hàm tổng chi phí sản xuất là \(TC = {x^3} - 77{x^2} + 1000x + 40000\) và hàm doanh thu là \(TR = - 2{x^2} + 1312x\), với \(x\) là số sản phẩm. Lợi nhuận của xí nghiệp \(A\) được xác định bằng hàm số \(f\left( x \right) = TR - TC\), cực đại lợi nhuận của xí nghiệp \(A\) khi đó đạt bao nhiêu sản phẩm?
Câu hỏi trong đề: Bộ 20 đề thi Giữa kì 1 Toán 12 có đáp án !!
Quảng cáo
Trả lời:
Xét hàm số:
\(f\left( x \right) = TR - TC = - 2{x^2} + 1312x - \left( {{x^3} - 77{x^2} + 1000x + 40000} \right)\).
\(f\left( x \right) = - {x^3} + 75{x^2} + 312x - 40000\).
TXĐ: \(D = \left( {0\,;\, + \infty } \right)\).
Ta có \(f'\left( x \right) = - 3{x^2} + 150x + 312 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 52\left( N \right)\\x = - 2\left( L \right)\end{array} \right.\)
Bảng biến thiên:

Hàm số đạt giá trị cực đại tại \(x = 52\).
Vậy lợi nhuận của công ty đạt cực đại khi số sản phẩm \(x = 52\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Ta có: \(A\left( {0;0;5} \right),B\left( {6;7;1} \right),C\left( {5;0;2} \right) \Rightarrow \overrightarrow {AB} = \left( {6;7; - 4} \right),\overrightarrow {AC} = \left( {5;0; - 3} \right),\overrightarrow {BC} = \left( { - 1; - 7;1} \right)\).
\(\left[ {\overrightarrow {AC} ,\overrightarrow {AB} } \right] = \left( {21;2;35} \right)\); \(AB = \sqrt {101} \); \(AC = \sqrt {34} \); \(BC = \sqrt {51} \).
\({S_{\Delta ABC}} = \frac{1}{2}\left| {\left[ {\overrightarrow {AC} ,\overrightarrow {AB} } \right]} \right| = \frac{{\sqrt {{{21}^2} + {2^2} + {{35}^2}} }}{2} = \frac{{\sqrt {1670} }}{2}\).
Bán kính đường tròn ngoại tiếp tam giác \(ABC\) bằng: \(R = \frac{{AB.AC.BC}}{{4{S_{\Delta ABC}}}} = \frac{{\sqrt {101} .\sqrt {34} .\sqrt {51} }}{{4.\frac{{\sqrt {1670} }}{2}}} = \frac{{17\sqrt {253005} }}{{1670}} \approx 5,12\).
\(\cos \widehat C = \frac{{A{C^2} + B{C^2} - A{B^2}}}{{2.AC.BC}} = - \frac{{4\sqrt 6 }}{{51}}\). Suy ra \(\widehat C \approx 1,7641 \Rightarrow \widehat A + \widehat B \approx \pi - 1,7641 \approx 1,3775\).
Suy ra số đo cung \(ACB\) bằng \(2\left( {\widehat A + \widehat B} \right) \approx 2,755 = \alpha \)
Suy ra độ dài cung bằng \(R.\alpha \approx 14,1056 \approx 14\left( m \right)\).
Lời giải
Doanh thu khi nhà máy \(A\) bán hết \(x\) tấn sản phẩm cho nhà máy \(B\) là: \(x.P\left( x \right) = x\left( {45 - 0,001{x^2}} \right) = 45x - 0,001{x^3}\).
Lợi nhuận thu được là: \(L\left( x \right) = 45x - 0,001{x^3} - \left( {100 + 30x} \right)\)\( = - 0,001{x^3} + 15x - 100\).
Ta có: \(L'\left( x \right) = - 0,003{x^2} + 15 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x \approx 70,7\,\,\,}\\{x \approx - 70,7}\end{array}} \right.\)
Bảng biến thiên:

Ta có: \(L\left( {70} \right) = 607\), \(L\left( {71} \right) = 607,089 > L\left( {70} \right)\)
Như vậy, nhà máy \(A\) cần bán \(71\) tấn sản phẩm cho nhà máy \(B\) mỗi tháng để lợi nhuận thu được là lớn nhất.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

