Câu hỏi:

28/10/2025 188 Lưu

Xí nghiệp \(A\) sản xuất độc quyền một loại sản phẩm. Biết rằng hàm tổng chi phí sản xuất là \(TC = {x^3} - 77{x^2} + 1000x + 40000\) và hàm doanh thu là \(TR = - 2{x^2} + 1312x\), với \(x\) là số sản phẩm. Lợi nhuận của xí nghiệp \(A\) được xác định bằng hàm số \(f\left( x \right) = TR - TC\), cực đại lợi nhuận của xí nghiệp \(A\) khi đó đạt bao nhiêu sản phẩm?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Xét hàm số:

\(f\left( x \right) = TR - TC =  - 2{x^2} + 1312x - \left( {{x^3} - 77{x^2} + 1000x + 40000} \right)\).

\(f\left( x \right) =  - {x^3} + 75{x^2} + 312x - 40000\).

TXĐ: \(D = \left( {0\,;\, + \infty } \right)\).

Ta có \(f'\left( x \right) =  - 3{x^2} + 150x + 312 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 52\left( N \right)\\x =  - 2\left( L \right)\end{array} \right.\)

Bảng biến thiên:

Xí nghiệp \(A\) sản xuất độc quyền một loại (ảnh 1)

Hàm số đạt giá trị cực đại  tại \(x = 52\).

Vậy lợi nhuận của công ty đạt cực đại khi số sản phẩm \(x = 52\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trượt nước là một trò chơi vận động được nhiều người yêu th (ảnh 2)

Ta có: \(A\left( {0;0;5} \right),B\left( {6;7;1} \right),C\left( {5;0;2} \right) \Rightarrow \overrightarrow {AB}  = \left( {6;7; - 4} \right),\overrightarrow {AC}  = \left( {5;0; - 3} \right),\overrightarrow {BC}  = \left( { - 1; - 7;1} \right)\).

\(\left[ {\overrightarrow {AC} ,\overrightarrow {AB} } \right] = \left( {21;2;35} \right)\); \(AB = \sqrt {101} \); \(AC = \sqrt {34} \); \(BC = \sqrt {51} \).

\({S_{\Delta ABC}} = \frac{1}{2}\left| {\left[ {\overrightarrow {AC} ,\overrightarrow {AB} } \right]} \right| = \frac{{\sqrt {{{21}^2} + {2^2} + {{35}^2}} }}{2} = \frac{{\sqrt {1670} }}{2}\).

Bán kính đường tròn ngoại tiếp tam giác \(ABC\) bằng: \(R = \frac{{AB.AC.BC}}{{4{S_{\Delta ABC}}}} = \frac{{\sqrt {101} .\sqrt {34} .\sqrt {51} }}{{4.\frac{{\sqrt {1670} }}{2}}} = \frac{{17\sqrt {253005} }}{{1670}} \approx 5,12\).

\(\cos \widehat C = \frac{{A{C^2} + B{C^2} - A{B^2}}}{{2.AC.BC}} =  - \frac{{4\sqrt 6 }}{{51}}\). Suy ra \(\widehat C \approx 1,7641 \Rightarrow \widehat A + \widehat B \approx \pi  - 1,7641 \approx 1,3775\).

Suy ra số đo cung \(ACB\) bằng \(2\left( {\widehat A + \widehat B} \right) \approx 2,755 = \alpha \)

Suy ra độ dài cung  bằng \(R.\alpha  \approx 14,1056 \approx 14\left( m \right)\).

Lời giải

Doanh thu khi nhà máy \(A\) bán hết \(x\) tấn sản phẩm cho nhà máy \(B\) là: \(x.P\left( x \right) = x\left( {45 - 0,001{x^2}} \right) = 45x - 0,001{x^3}\).

Lợi nhuận thu được là: \(L\left( x \right) = 45x - 0,001{x^3} - \left( {100 + 30x} \right)\)\( =  - 0,001{x^3} + 15x - 100\).

Ta có: \(L'\left( x \right) =  - 0,003{x^2} + 15 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x \approx 70,7\,\,\,}\\{x \approx  - 70,7}\end{array}} \right.\)

Bảng biến thiên:

Nhà máy \(A\) chuyên sản xuất một loại sản phẩ (ảnh 1)

Ta có: \(L\left( {70} \right) = 607\), \(L\left( {71} \right) = 607,089 > L\left( {70} \right)\)

Như vậy, nhà máy \(A\) cần bán \(71\) tấn sản phẩm cho nhà máy \(B\) mỗi tháng để lợi nhuận thu được là lớn nhất.

Câu 6

A. \(B\) là trung điểm của \(AC.\)                  
B. Ba điểm \(A\), \(B\), \(C\) không thẳng hàng.              
C. Ba điểm \(A\), \(B\), \(C\) thẳng hàng.     
D. Tam giác \(ABC\) vuông tại \(A.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. 2.                            
B. 0.                            
C. 1.           
D. 3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP