PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.
Một nhà máy sản xuất \(x\) sản phẩm trong mỗi tháng. Chi phí sản xuất \(x\) sản phẩm được cho bởi hàm chi phí \(C\left( x \right) = 16000 + 500x - 1,6{x^2} + 0,004{x^3}\) (nghìn đồng). Biết giá bán của mỗi sản phẩm là một hàm số phụ thuộc vào số lượng sản phẩm \(x\) và được cho bởi công thức \(p\left( x \right) = 1700 - 7x\) (nghìn đồng). Hỏi mỗi tháng nhà máy nên sản xuất bao nhiêu sản phẩm để lợi nhuận thu được là lớn nhất? Biết rằng kết quả khảo sát thị trường cho thấy sản phẩm sản xuất ra sẽ tiêu thụ hết.
PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.
Một nhà máy sản xuất \(x\) sản phẩm trong mỗi tháng. Chi phí sản xuất \(x\) sản phẩm được cho bởi hàm chi phí \(C\left( x \right) = 16000 + 500x - 1,6{x^2} + 0,004{x^3}\) (nghìn đồng). Biết giá bán của mỗi sản phẩm là một hàm số phụ thuộc vào số lượng sản phẩm \(x\) và được cho bởi công thức \(p\left( x \right) = 1700 - 7x\) (nghìn đồng). Hỏi mỗi tháng nhà máy nên sản xuất bao nhiêu sản phẩm để lợi nhuận thu được là lớn nhất? Biết rằng kết quả khảo sát thị trường cho thấy sản phẩm sản xuất ra sẽ tiêu thụ hết.Câu hỏi trong đề: Bộ 20 đề thi Giữa kì 1 Toán 12 có đáp án !!
Quảng cáo
Trả lời:
+) Số tiền nhà máy thu được khi bán hết \(x\) sản phẩm là: \(x.p\left( x \right) = 1700x - 7{x^2}\) (nghìn đồng)
Lợi nhuận nhà máy thu được khi sản xuất và bán hết \(x\) sản phẩm là: \(x.p\left( x \right) - C\left( x \right) = - 0,004{x^3} - 5,4{x^2} + 1200x - 16000\) (với \(x > 0\)).
+) Xét hàm số \(f\left( x \right) = - 0,004{x^3} - 5,4{x^2} + 1200x - 16000\) trên \(\left( {0; + \infty } \right)\)
Ta có \(f'\left( x \right) = - 0,012{x^2} - 10,8x + 1200\); \[f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 100\\x = - 1000\end{array} \right.\]
Bảng biến thiên

Từ bảng biến thiên, suy ra \(\mathop {\max }\limits_{\left( {0\,;\, + \infty } \right)} f\left( x \right) = f\left( {100} \right) = 46000\) (nghìn đồng).
Vậy mỗi tháng nhà máy nên sản xuất \(100\) sản phẩm thì lợi nhuận thu được là lớn nhất.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giả sử cần giảm giá bán mỗi cái tivi là \(x\) triệu đồng \(\left( {x < 14} \right)\).
Do giảm giá bán mỗi cái 500 ngàn đồng thì số lượng tivi bán ra sẽ tăng thêm 10 cái mỗi tháng nên số lượng tivi bán ra tăng lên bây giờ là: \(\frac{{10x}}{{0,5}} = 20x\).
Khi đó, doanh thu một tháng của cửa hàng là \(\left( {100 + 20x} \right).\left( {14 - x} \right) = - 20{x^2} + 180x + 1400\).
Xét hàm số \(f\left( x \right) = - 20{x^2} + 180x + 1400\,\,\left( {x < 14} \right)\)
Ta có \(f'\left( x \right) = - 40x + 180\); \(f'\left( x \right) = 0 \Leftrightarrow x = 4,5\).
Bảng biến thiên

Từ bảng biến thiên ta thấy: Để doanh thu cửa hàng đạt cao nhất thì giá bán mỗi cái tivi là \(14 - 4,5 = 9,5\) triệu đồng
Lời giải
Gọi \(x(\;cm);y(\;cm)\) lần lượt là bán kính đáy và chiều cao của hình trụ \((x,y > 0;x < 30)\).
Độ dài dải dây ruy băng còn lại khi đã thắt nơ là: 120 cm.
Ta có: \((2x + y) \cdot 4 = 120 \Leftrightarrow y = 30 - 2x > 0 \Rightarrow 0 < x < 15\).
Thể tích khối hộp quà là: \(V = \pi {x^2} \cdot y = \pi {x^2}(30 - 2x)\). Thể tích \(V\) lớn nhất khi hàm số \(f(x) = {x^2}(30 - 2x)\), \((0 < x < 15)\) đạt giá trị lớn nhất.
Ta có \({f^\prime }(x) = - 6{x^2} + 60x\);
Cho \({f^\prime }(x) = - 6{x^2} + 60x = 0 \Rightarrow x = 10\).
Lập bảng biến thiên ta thấy thể tích đạt GTLN là: \(V = \pi \cdot f(10) = 1000\pi \left( {\;c{m^3}} \right)\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



