Một người có một dây ruy băng dài 130 cm, người đó cần bọc dải ruy băng này quanh một hộp quà hình trụ. Khi bọc quà, người này dùng 10 cm của dải ruy băng để thắt nơ ở trên nắp hộp (như hình vẽ). Dải ruy băng có thể bọc được hộp quà có thể tích bằng \(a.\pi \left( {c{m^3}} \right),a \in {\mathbb{N}^*}\). Giá trị lớn nhất của \(a\) là bao nhiêu?
Một người có một dây ruy băng dài 130 cm, người đó cần bọc dải ruy băng này quanh một hộp quà hình trụ. Khi bọc quà, người này dùng 10 cm của dải ruy băng để thắt nơ ở trên nắp hộp (như hình vẽ). Dải ruy băng có thể bọc được hộp quà có thể tích bằng \(a.\pi \left( {c{m^3}} \right),a \in {\mathbb{N}^*}\). Giá trị lớn nhất của \(a\) là bao nhiêu?

Câu hỏi trong đề: Bộ 20 đề thi Giữa kì 1 Toán 12 có đáp án !!
Quảng cáo
Trả lời:
Gọi \(x(\;cm);y(\;cm)\) lần lượt là bán kính đáy và chiều cao của hình trụ \((x,y > 0;x < 30)\).
Độ dài dải dây ruy băng còn lại khi đã thắt nơ là: 120 cm.
Ta có: \((2x + y) \cdot 4 = 120 \Leftrightarrow y = 30 - 2x > 0 \Rightarrow 0 < x < 15\).
Thể tích khối hộp quà là: \(V = \pi {x^2} \cdot y = \pi {x^2}(30 - 2x)\). Thể tích \(V\) lớn nhất khi hàm số \(f(x) = {x^2}(30 - 2x)\), \((0 < x < 15)\) đạt giá trị lớn nhất.
Ta có \({f^\prime }(x) = - 6{x^2} + 60x\);
Cho \({f^\prime }(x) = - 6{x^2} + 60x = 0 \Rightarrow x = 10\).
Lập bảng biến thiên ta thấy thể tích đạt GTLN là: \(V = \pi \cdot f(10) = 1000\pi \left( {\;c{m^3}} \right)\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn hệ trục tọa độ \(Oxyz\) sao cho điểm xuất phát là gốc \(O\) như hình vẽ trên.
Khi đó tọa độ hai kinh khí cầu là \(A\left( {3;4;1} \right),B\left( { - 1; - \frac{3}{2};\frac{4}{5}} \right)\)
Gọi \(M\)là vị trí người quan sát và \(B'\left( { - 1; - \frac{3}{2}; - \frac{4}{5}} \right)\) là điểm đối xứng với \(B\) qua mặt phẳng \((Oxy)\).
Khi đó \(MA + MB = MA + MB' \ge AB' = \sqrt {{{\left( {3 + 1} \right)}^2} + {{\left( {4 + \frac{3}{2}} \right)}^2} + {{\left( {1 + \frac{4}{5}} \right)}^2}} \approx 7,03\,km\)
Dấu bằng xảy ra khi và chỉ khi \(M,A,B'\) thẳng hàng và \(M\) thuộc đoạn \(AB'\). Điều này luôn xảy ra.
Lời giải
Giả sử cần giảm giá bán mỗi cái tivi là \(x\) triệu đồng \(\left( {x < 14} \right)\).
Do giảm giá bán mỗi cái 500 ngàn đồng thì số lượng tivi bán ra sẽ tăng thêm 10 cái mỗi tháng nên số lượng tivi bán ra tăng lên bây giờ là: \(\frac{{10x}}{{0,5}} = 20x\).
Khi đó, doanh thu một tháng của cửa hàng là \(\left( {100 + 20x} \right).\left( {14 - x} \right) = - 20{x^2} + 180x + 1400\).
Xét hàm số \(f\left( x \right) = - 20{x^2} + 180x + 1400\,\,\left( {x < 14} \right)\)
Ta có \(f'\left( x \right) = - 40x + 180\); \(f'\left( x \right) = 0 \Leftrightarrow x = 4,5\).
Bảng biến thiên

Từ bảng biến thiên ta thấy: Để doanh thu cửa hàng đạt cao nhất thì giá bán mỗi cái tivi là \(14 - 4,5 = 9,5\) triệu đồng
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

