Trong không gian với hệ trục tọa độ Oxyz, cho tam giác \(ABC\) có tọa độ các đỉnh là \(A\left( {2;1; - 1} \right),\) \(B\left( {3;2; - 2} \right),C\left( {1;0;0} \right).\) Khoảng cách từ gốc \(O\) đến trọng tâm của tam giác \(ABC\) bằng              
                                    
                                                                                                                        Câu hỏi trong đề: Bộ 20 đề thi Giữa kì 1 Toán 12 có đáp án !!
Quảng cáo
Trả lời:
 Giải bởi Vietjack
                                        Giải bởi Vietjack
                                    Chọn B
Ta có trọng tâm của tam giác \(ABC\) là \(G\left( {2;1; - 1} \right)\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giả sử cần giảm giá bán mỗi cái tivi là \(x\) triệu đồng \(\left( {x < 14} \right)\).
Do giảm giá bán mỗi cái 500 ngàn đồng thì số lượng tivi bán ra sẽ tăng thêm 10 cái mỗi tháng nên số lượng tivi bán ra tăng lên bây giờ là: \(\frac{{10x}}{{0,5}} = 20x\).
Khi đó, doanh thu một tháng của cửa hàng là \(\left( {100 + 20x} \right).\left( {14 - x} \right) = - 20{x^2} + 180x + 1400\).
Xét hàm số \(f\left( x \right) = - 20{x^2} + 180x + 1400\,\,\left( {x < 14} \right)\)
Ta có \(f'\left( x \right) = - 40x + 180\); \(f'\left( x \right) = 0 \Leftrightarrow x = 4,5\).
Bảng biến thiên

Từ bảng biến thiên ta thấy: Để doanh thu cửa hàng đạt cao nhất thì giá bán mỗi cái tivi là \(14 - 4,5 = 9,5\) triệu đồng
Lời giải
Gọi \(x(\;cm);y(\;cm)\) lần lượt là bán kính đáy và chiều cao của hình trụ \((x,y > 0;x < 30)\).
Độ dài dải dây ruy băng còn lại khi đã thắt nơ là: 120 cm.
Ta có: \((2x + y) \cdot 4 = 120 \Leftrightarrow y = 30 - 2x > 0 \Rightarrow 0 < x < 15\).
Thể tích khối hộp quà là: \(V = \pi {x^2} \cdot y = \pi {x^2}(30 - 2x)\). Thể tích \(V\) lớn nhất khi hàm số \(f(x) = {x^2}(30 - 2x)\), \((0 < x < 15)\) đạt giá trị lớn nhất.
Ta có \({f^\prime }(x) = - 6{x^2} + 60x\);
Cho \({f^\prime }(x) = - 6{x^2} + 60x = 0 \Rightarrow x = 10\).
Lập bảng biến thiên ta thấy thể tích đạt GTLN là: \(V = \pi \cdot f(10) = 1000\pi \left( {\;c{m^3}} \right)\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.




 Nhắn tin Zalo
 Nhắn tin Zalo