Câu hỏi:

29/10/2025 52 Lưu

PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.

Hình bên dưới minh họa sơ đồ một ngôi nhà trong không gian \(Oxyz\), trong đó nền nhà, bốn bức tường và hai mái nhà đều là hình chữ nhật. Tính số đo góc dốc của mái nhà, tức là số đo của góc nhị diện có cạnh là đường thẳng \[FG\], hai mặt \(\left( {FGQP} \right)\) và \(\left( {FGHE} \right)\).

Hình bên dưới minh họa sơ đồ một ngôi nhà trong (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Để tính góc của mái nhà, ta tính số đo của góc nhị diện có cạnh là đường thẳng \(FG\), hai mặt lần lượt là \(\left( {FGQP} \right)\) và \(\left( {FGHE} \right)\).

Do mặt phẳng \(\left( {Oxy} \right)\) vuông góc với hai mặt phẳng \(\left( {FGQP} \right)\) và \(\left( {FGHE} \right)\), \(FP = \left( {Oxy} \right) \cap \left( {FGQP} \right)\), \(FE = \left( {Oxz} \right) \cap \left( {FGEH} \right)\) nên \(\widehat {PFE}\) là góc phẳng nhị diện cần tìm.

Tứ giác \[OAFE\] là hình chữ nhật nên \({x_F} = {x_A} = 4\), \({z_F} = {z_E} = 3\).

Do \(F\) nằm trên mặt phẳng \(\left( {Oxz} \right)\) nên tọa độ điểm \(F\left( {4;0;3} \right)\).

Ta có \(\overrightarrow {FP}  = \left( { - 2;0;1} \right)\), \(\overrightarrow {FE}  = \left( { - 4;0;0} \right)\) suy ra:

\(\cos \widehat {PFE} = \cos \left( {\overrightarrow {FP} ;\overrightarrow {FE} } \right) = \frac{{\overrightarrow {FP} .\overrightarrow {FE} }}{{FP.FE}} = \frac{{\left( { - 2} \right)\left( { - 4} \right) + 0 \times 0 + 1 \times 0}}{{\sqrt {{{\left( { - 2} \right)}^2} + {0^2} + {1^2}} \sqrt {{{\left( { - 4} \right)}^2} + {0^2} + {0^2}} }} = \frac{{2\sqrt 5 }}{5}\).

Do đó, \(\widehat {PFE} \approx 26,6^\circ \). Vậy góc dốc mái nhà khoảng \(26,6^\circ \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x\left( {cm} \right);y\left( {cm} \right)\) lần lượt là bán kính đáy và chiều cao của hình trụ \(\left( {x,y > 0;x < 30} \right)\)

Dải dây ruy băng còn lại khi đã thắt nơ là: 120cm.

Ta có: \(\left( {2x + y} \right).4 = 120 \Leftrightarrow y = 30 - 2x\)

Thể tích khối hộp quà là: \(V = \pi {x^2}.y = \pi {x^2}\left( {30 - 2x} \right)\)

Thể tích V lớn nhất khi hàm số \(f(x) = {x^2}\left( {30 - 2x} \right)\) với \(0 < x < 30\) đạt GTLN

\(f'\left( x \right) =  - 6{x^2} + 60x\), cho \(f'\left( x \right) =  - 6{x^2} + 60x = 0 \Leftrightarrow x = 10\)

Lập Bảng Biến thiên ta thấy thể tích đạt GTLN là \(V = 1000\pi \left( {c{m^3}} \right) = \pi \left( {d{m^3}} \right)\).

Lời giải

a)

Đ

b)

Đ

c)

S

d)

Đ

 

 Đúng: Khi \(m = 0\) thì đồ thị hàm số có tiệm cận xiên là \(y =  - x + 1\)

 Đúng: Khi \(m = 0:y = \frac{{ - {x^2} + 2x - 5}}{{x - 1}} =  - x + 1 - \frac{4}{{x - 1}}\)

Tâp xác định \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).

Đạo hàm \(y' = \frac{{ - {x^2} + 2x + 3}}{{{{\left( {x - 1} \right)}^2}}} = 0 \Leftrightarrow  - {x^2} + 2x + 3 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x =  - 1 \Rightarrow y = 4}\\{x = 3 \Rightarrow y =  - 4}\end{array}} \right.\)

là đường tiệm cận đứng; \(\mathop {\lim }\limits_{x \to  \pm \infty } y =  - x + 1:y =  - x + 1\) là tiệm cận xiên

Bảng biến thiên:

Cho hàm số \(y = \frac{{ - {x^2 (ảnh 1)

\(x = 0 \Rightarrow y = 5;\,\,y = 0 \Rightarrow  - {x^2} + 2x - 5 = 0{\rm{ (v\^o  nghiem) }}\)

Đồ thị hàm số không cắt \(Ox\).

 Sai: \(y = \frac{{ - {x^2} + 2\left( {m + 1} \right)x - m - 5}}{{x - 1}}\); \(y' = \frac{{ - {x^2} + 2x - 2m - 2 + m + 5}}{{{{\left( {x - 1} \right)}^2}}} = \frac{{ - {x^2} + 2x - m + 3}}{{{{\left( {x - 1} \right)}^2}}}\)

Hàm số \[y\] có cực đại cực tiểu khi phương trình \( - {x^2} + 2x - m + 3 = 0\) có hai nghiệm phân biệt

\( \Leftrightarrow \Delta ' = 1 - m + 3 = 4 - m > 0 \Leftrightarrow m < 4\)

Nghiệm \(x = 1\) không phải là nghiệm của phương trình \(y' = 0 \Leftrightarrow  - 1 + 2 - m + 3 \ne 0\)\( \Leftrightarrow m \ne 4\)

Điều kiện sau cùng: \(m < 4\)

 Đúng: \({x_M} > 1 \Rightarrow M\) thuộc nhánh bên phải của \[\left( C \right)\] nên \(I\left( {1\,;\,0} \right)\)

Toạ độ điểm \(M\left( {m\,;\, - m + 1 - \frac{4}{{m - 1}}} \right)\); \[I{M^2} = {\left( {m - 1} \right)^2} + \left[ {{{\left( { - m + 1} \right)}^2} + \frac{{16}}{{{{\left( {m - 1} \right)}^2}}} + 8} \right]\]

\[ = 2{\left( {m - 1} \right)^2} + \frac{{16}}{{{{\left( {m - 1} \right)}^2}}} + 8 \ge 2\sqrt 2 \left( {m - 1} \right).\frac{4}{{\left( {m - 1} \right)}} + 8 \Rightarrow I{M^2} \ge 8\left( {\sqrt 2  + 1} \right) \Rightarrow IM \ge \sqrt {8\left( {\sqrt 2  + 1} \right)} \]

\[IM\]ngắn nhất khi \(2{\left( {m - 1} \right)^2} = \frac{{16}}{{{{\left( {m - 1} \right)}^2}}} \Leftrightarrow {\left( {m - 1} \right)^4} = 8 \Leftrightarrow m = 1 + \sqrt[4]{8}\)\( \Rightarrow {y_M} =  - \sqrt[4]{8} - \frac{4}{{\sqrt[4]{8}}} <  - 4\)

Câu 4

A. \(\mathop {{\rm{max}}}\limits_{x \in \left[ { - 1;3} \right)} f\left( x \right) = 1\).                              
B. \(\mathop {{\rm{max}}}\limits_{x \in \left[ { - 1;3} \right)} f\left( x \right) = 2\).              
C. \(\mathop {{\rm{min}}}\limits_{x \in \left[ { - 1;3} \right)} f\left( x \right) = - 2\).                                   
D. \(\mathop {{\rm{min}}}\limits_{x \in \left[ { - 1;3} \right)} f\left( x \right) = - 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A.  \(y = 0\);\(x = 1\);\(x = 3\).                       
B.  \(x = 0\);\(y = 1\) .                                           
C.  \(y = 0\);\(x = 1\) . 
D. \(x = 0\);\(y = 1\);\(y = 3\) .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP