Câu hỏi:

29/10/2025 133 Lưu

Một người có một dây ruy băng dài 130 cm, người đó dùng dải ruy băng này để trang trí hộp quà hình trụ. Khi trang trí hộp quà, người này dùng 10cm của dải ruy băng để thắt nơ ở trên nắp hộp . Với dải ruy băng có kích thước như trên có thể trang trí được hộp quà có thể tích lớn nhất là bao nhiêu \(d{m^3}\)?
Một người có một dây ruy băng dài 130 cm, người đó dùng dải ruy băng này để trang trí hộp quà hình trụ. Khi trang trí hộp quà, người này dùng 10cm của dải ruy băng để thắt nơ ở trên nắp hộp . (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(x\left( {cm} \right);y\left( {cm} \right)\) lần lượt là bán kính đáy và chiều cao của hình trụ \(\left( {x,y > 0;x < 30} \right)\)

Dải dây ruy băng còn lại khi đã thắt nơ là: 120cm.

Ta có: \(\left( {2x + y} \right).4 = 120 \Leftrightarrow y = 30 - 2x\)

Thể tích khối hộp quà là: \(V = \pi {x^2}.y = \pi {x^2}\left( {30 - 2x} \right)\)

Thể tích V lớn nhất khi hàm số \(f(x) = {x^2}\left( {30 - 2x} \right)\) với \(0 < x < 30\) đạt GTLN

\(f'\left( x \right) =  - 6{x^2} + 60x\), cho \(f'\left( x \right) =  - 6{x^2} + 60x = 0 \Leftrightarrow x = 10\)

Lập Bảng Biến thiên ta thấy thể tích đạt GTLN là \(V = 1000\pi \left( {c{m^3}} \right) = \pi \left( {d{m^3}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a)

Đ

b)

Đ

c)

S

d)

Đ

 

 Đúng: Khi \(m = 0\) thì đồ thị hàm số có tiệm cận xiên là \(y =  - x + 1\)

 Đúng: Khi \(m = 0:y = \frac{{ - {x^2} + 2x - 5}}{{x - 1}} =  - x + 1 - \frac{4}{{x - 1}}\)

Tâp xác định \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).

Đạo hàm \(y' = \frac{{ - {x^2} + 2x + 3}}{{{{\left( {x - 1} \right)}^2}}} = 0 \Leftrightarrow  - {x^2} + 2x + 3 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x =  - 1 \Rightarrow y = 4}\\{x = 3 \Rightarrow y =  - 4}\end{array}} \right.\)

là đường tiệm cận đứng; \(\mathop {\lim }\limits_{x \to  \pm \infty } y =  - x + 1:y =  - x + 1\) là tiệm cận xiên

Bảng biến thiên:

Cho hàm số \(y = \frac{{ - {x^2 (ảnh 1)

\(x = 0 \Rightarrow y = 5;\,\,y = 0 \Rightarrow  - {x^2} + 2x - 5 = 0{\rm{ (v\^o  nghiem) }}\)

Đồ thị hàm số không cắt \(Ox\).

 Sai: \(y = \frac{{ - {x^2} + 2\left( {m + 1} \right)x - m - 5}}{{x - 1}}\); \(y' = \frac{{ - {x^2} + 2x - 2m - 2 + m + 5}}{{{{\left( {x - 1} \right)}^2}}} = \frac{{ - {x^2} + 2x - m + 3}}{{{{\left( {x - 1} \right)}^2}}}\)

Hàm số \[y\] có cực đại cực tiểu khi phương trình \( - {x^2} + 2x - m + 3 = 0\) có hai nghiệm phân biệt

\( \Leftrightarrow \Delta ' = 1 - m + 3 = 4 - m > 0 \Leftrightarrow m < 4\)

Nghiệm \(x = 1\) không phải là nghiệm của phương trình \(y' = 0 \Leftrightarrow  - 1 + 2 - m + 3 \ne 0\)\( \Leftrightarrow m \ne 4\)

Điều kiện sau cùng: \(m < 4\)

 Đúng: \({x_M} > 1 \Rightarrow M\) thuộc nhánh bên phải của \[\left( C \right)\] nên \(I\left( {1\,;\,0} \right)\)

Toạ độ điểm \(M\left( {m\,;\, - m + 1 - \frac{4}{{m - 1}}} \right)\); \[I{M^2} = {\left( {m - 1} \right)^2} + \left[ {{{\left( { - m + 1} \right)}^2} + \frac{{16}}{{{{\left( {m - 1} \right)}^2}}} + 8} \right]\]

\[ = 2{\left( {m - 1} \right)^2} + \frac{{16}}{{{{\left( {m - 1} \right)}^2}}} + 8 \ge 2\sqrt 2 \left( {m - 1} \right).\frac{4}{{\left( {m - 1} \right)}} + 8 \Rightarrow I{M^2} \ge 8\left( {\sqrt 2  + 1} \right) \Rightarrow IM \ge \sqrt {8\left( {\sqrt 2  + 1} \right)} \]

\[IM\]ngắn nhất khi \(2{\left( {m - 1} \right)^2} = \frac{{16}}{{{{\left( {m - 1} \right)}^2}}} \Leftrightarrow {\left( {m - 1} \right)^4} = 8 \Leftrightarrow m = 1 + \sqrt[4]{8}\)\( \Rightarrow {y_M} =  - \sqrt[4]{8} - \frac{4}{{\sqrt[4]{8}}} <  - 4\)

Câu 3

A. \(\mathop {{\rm{max}}}\limits_{x \in \left[ { - 1;3} \right)} f\left( x \right) = 1\).                              
B. \(\mathop {{\rm{max}}}\limits_{x \in \left[ { - 1;3} \right)} f\left( x \right) = 2\).              
C. \(\mathop {{\rm{min}}}\limits_{x \in \left[ { - 1;3} \right)} f\left( x \right) = - 2\).                                   
D. \(\mathop {{\rm{min}}}\limits_{x \in \left[ { - 1;3} \right)} f\left( x \right) = - 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A.  \(y = 0\);\(x = 1\);\(x = 3\).                       
B.  \(x = 0\);\(y = 1\) .                                           
C.  \(y = 0\);\(x = 1\) . 
D. \(x = 0\);\(y = 1\);\(y = 3\) .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP