Cho \(\Delta ABC\) có \(BC = \sqrt 6 ,CA = 2,AB = 1 + \sqrt 3 \). Các mệnh đề sau đúng hay sai?
a) \(B{C^2} = A{B^2} + A{C^2} - 2.AB.AC.\cos \widehat {\rm{A}}\).
b) \(\widehat B = 35^\circ \).
c) \(S = \frac{{3 + \sqrt 3 }}{2}\).
d) \(R = \sqrt 2 \).
Cho \(\Delta ABC\) có \(BC = \sqrt 6 ,CA = 2,AB = 1 + \sqrt 3 \). Các mệnh đề sau đúng hay sai?
a) \(B{C^2} = A{B^2} + A{C^2} - 2.AB.AC.\cos \widehat {\rm{A}}\).
b) \(\widehat B = 35^\circ \).
c) \(S = \frac{{3 + \sqrt 3 }}{2}\).
d) \(R = \sqrt 2 \).
Quảng cáo
Trả lời:
a) Đ, b) S, c) Đ, d) Đ
a) \(B{C^2} = A{B^2} + A{C^2} - 2.AB.AC.\cos \widehat {\rm{A}}\).
b) Ta có \(\cos \widehat B = \frac{{A{B^2} + B{C^2} - A{C^2}}}{{2.AB.BC}} = \frac{{{{\left( {1 + \sqrt 3 } \right)}^2} + 6 - 4}}{{2.\left( {1 + \sqrt 3 } \right).\sqrt 6 }} = \frac{{\sqrt 2 }}{2} \Rightarrow \widehat B = 45^\circ \).
c) Ta có \(S = \frac{1}{2}.AB.BC.\sin \widehat B = \frac{1}{2}.\left( {1 + \sqrt 3 } \right).\sqrt 6 .\sin 45^\circ = \frac{{3 + \sqrt 3 }}{2}\).
d) Vì \(\frac{{AC}}{{\sin B}} = 2R \Rightarrow R = \frac{{AC}}{{2\sin B}} = \frac{2}{{2.\sin 45^\circ }} = \sqrt 2 \).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \[\left\{ \begin{array}{l}y \ge 0\\3x + 2y < - 6\end{array} \right.\].
B. \[\left\{ \begin{array}{l}x > 0\\3x + 2y < 6\end{array} \right.\].
Lời giải
Đáp án đúng là: C
Dựa vào hình vẽ ta thấy đồ thị gồm hai đường thẳng \(y = 0\) và đường thẳng \(3x + 2y = 6\).
Miền nghiệm gồm phần y nhận giá trị không âm.
Lại có \(O\left( {0;0} \right)\) thỏa mãn bất phương trình \(3x + 2y < 6\).
Vậy miền không gạch biểu diễn miền nghiệm của hệ bất phương trình \[\left\{ \begin{array}{l}y \ge 0\\3x + 2y \le 6\end{array} \right.\].
Lời giải
Trả lời: 125.
Gọi \(x;y\) lần lượt là số radio kiểu 1 và kiểu hai sản xuất được trong 1 ngày.
Ta có \(0 \le x \le 45;0 \le y \le 80\).
Số linh kiện cần để sản xuất \(x\)radio kiểu 1 là \(12x\), số linh kiện cần để sản xuất \(y\)radio kiểu 2 là \(9y\).
Tổng số linh kiện là: \(12x + 9y\).
Theo đề ta có: \(\left\{ \begin{array}{l}0 \le x \le 45\\0 \le y \le 80\\12x + 9y \le 900\end{array} \right.\) (I).
Số tiền lãi thu được là \(F\left( {x;y} \right) = 250000x + 180000y\).
Bài toán trở thành tìm \(x,y\) là nghiệm của hệ bất phương trình (I) để \(F\left( {x;y} \right) = 250000x + 180000y\) đạt giá trị lớn nhất.
Miền nghiệm của hệ bất phương trình (I) là ngũ giác OABCD (miền tô màu) như hình vẽ.

Khi đó \(F\left( {x;y} \right)\) đạt giá trị lớn nhất khi \(\left( {x;y} \right)\) là một trong các điểm sau:
\(O\left( {0;0} \right),A\left( {0;80} \right),B\left( {15;80} \right),C\left( {45;40} \right),D\left( {45;0} \right)\).
Có \(F\left( {0;0} \right) = 0;\)\(F\left( {0;80} \right) = 250000.0 + 180000.80 = 14400000\);
\(F\left( {15;80} \right) = 250000.15 + 180000.80 = 18150000\); \(F\left( {45;40} \right) = 250000.45 + 180000.40 = 18450000\);
\(F\left( {45;0} \right) = 250000.45 + 180000.0 = 11250000\).
Tiền lãi thu được nhiều nhất là \(18450000\) đồng khi \({x_0} = 45;{y_0} = 40\).
\(T = {x_0} + 2{y_0} = 45 + 2.40 = 125\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.





