Câu hỏi:

03/11/2025 8 Lưu

Tổng các nghiệm thuộc đoạn \(\left[ {0;\frac{{5\pi }}{2}} \right]\) của phương trình \(2\sin x - \sqrt 3 = 0\)

A.\(\frac{{4\pi }}{3}\).    
B. \(\pi \).    
C. \(\frac{{10\pi }}{3}\).          
D.\(\frac{{8\pi }}{3}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

Đáp án đúng là: C

Phương trình \(2\sin x - \sqrt 3 = 0 \Leftrightarrow \sin x = \frac{{\sqrt 3 }}{2}\).

\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi \\x = \pi - \frac{\pi }{3} + k2\pi \end{array} \right.,k \in \mathbb{Z} \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi \\x = \frac{{2\pi }}{3} + k2\pi \end{array} \right.,k \in \mathbb{Z}\)

\(x \in \left[ {0;\frac{{5\pi }}{2}} \right]\) nên ta có:

\(0 \le \frac{\pi }{3} + k2\pi \le \frac{{5\pi }}{2} \Leftrightarrow - \frac{\pi }{3} \le k2\pi \le \frac{{13\pi }}{6} \Leftrightarrow - \frac{1}{6} \le k \le \frac{{13}}{{12}}\)

\( \Rightarrow k \in \left\{ {0;1} \right\}\) (vì \(k \in \mathbb{Z}\)) \( \Rightarrow x \in \left\{ {\frac{\pi }{3};\frac{{7\pi }}{3}} \right\}\).

\(0 \le \frac{{2\pi }}{3} + k2\pi \le \frac{{5\pi }}{2} \Leftrightarrow - \frac{{2\pi }}{3} \le k2\pi \le \frac{{11\pi }}{6} \Leftrightarrow - \frac{1}{3} \le k \le \frac{{11}}{{12}}\)

\( \Rightarrow k = 0\) (vì \(k \in \mathbb{Z}\)) \( \Rightarrow x = \frac{{2\pi }}{3}\).

Vậy tổng các nghiệm thuộc đoạn \(\left[ {0;\frac{{5\pi }}{2}} \right]\) của phương trình là: \(\frac{\pi }{3} + \frac{{2\pi }}{3} + \frac{{7\pi }}{3} = \frac{{10\pi }}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải:

Cho tứ giác \(ABCD\) trong đó kh (ảnh 1)

a) *Giao tuyến giữa mặt phẳng \(\left( {SAC} \right)\)\(\left( {SBD} \right)\):

Gọi \(O\) là giao điểm hai đường chéo \(AC\)\(BD\). Ta có:

\(\left. \begin{array}{l}S \in \left( {SAC} \right)\\S \in \left( {SBD} \right)\end{array} \right\} \Rightarrow S\) là điểm chung giữa hai mặt phẳng \(\left( {SAC} \right)\)\(\left( {SBD} \right)\).

\(O \in AC\)\(AC\) nằm trên \(\left( {SAC} \right)\) nên \(O \in \left( {SAC} \right)\).

Tương tự \(O \in \left( {SBD} \right)\), do đó \(O\) cũng là điểm chung giữa hai mặt phẳng \(\left( {SAC} \right)\)\(\left( {SBD} \right)\).

Vậy \(SO\) là giao tuyến giữa hai mặt phẳng \(\left( {SAC} \right)\)\(\left( {SBD} \right)\).

*Giao tuyến giữa mặt phẳng \(\left( {SAB} \right)\)\(\left( {SCD} \right)\):

Gọi \(I\) là giao điểm giữa \(AB\)\(CD\). Ta có:

\(\left. \begin{array}{l}S \in \left( {SAB} \right)\\S \in \left( {SCD} \right)\end{array} \right\} \Rightarrow S\) là điểm chung giữa hai mặt phẳng \(\left( {SAB} \right)\)\(\left( {SCD} \right)\).

\(I \in AB\)\(AB\) nằm trên \(\left( {SAB} \right)\) nên \(I \in \left( {SAB} \right)\).

Tương tự \(I \in \left( {SCD} \right)\), do đó \(I\) cũng là điểm chung giữa hai mặt phẳng \(\left( {SAB} \right)\)\(\left( {SCD} \right)\).

Vậy \(SI\) là giao tuyến giữa hai mặt phẳng \(\left( {SAB} \right)\)\(\left( {SCD} \right)\).

b) Xét mặt phẳng \(\left( {SBD} \right)\) có hai đường thẳng \(SO\)\(BN\) cắt nhau tại \(P\). Khi đó ta có:

\(P \in SO\)\(SO\) nằm trên \(\left( {SAC} \right)\), nên \(P \in \left( {SAC} \right)\). Mà \(P \in BN\) nên \(P\) là giao điểm giữa \(BN\) và mặt phẳng \(\left( {SAC} \right)\).

Câu 2

A. Điểm \(A\) và điểm \(B\).     
B. Điểm \(B\) và điểm \(F\).
C. Điểm \(B\)  và điểm \(D\).     
D. Điểm \(B\) và điểm \(H\).

Lời giải

Hướng dẫn giải:

Đáp án đúng là: C

Ta có:

\[\begin{array}{l}\sqrt 2 \sin x - 1 = 0 \Leftrightarrow \sin x = \frac{1}{{\sqrt 2 }}\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{4} + k2\pi \\x = \pi - \frac{\pi }{4} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{4} + k2\pi \\x = \frac{{3\pi }}{4} + k2\pi \end{array} \right.,k \in \mathbb{Z}\end{array}\].

Nhận thấy điểm biểu diễn \[\frac{\pi }{4} + k2\pi \] trên đường tròn lượng giác là điểm \(B\), điểm biểu diễn \[\frac{{3\pi }}{4} + k2\pi \] trên lượng giác là điểm \(D\).

Do đó điểm \(B\) và điểm \(D\) là các điểm biểu diễn nghiệm của phương trình \[\sqrt 2 \sin x - 1 = 0\] trên đường tròn lượng giác.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Đường thẳng \(SM\). 
B. Đường thẳng \(SA\).
C. Đường thẳng \(AM\).  
D. Đường thẳng \(BC\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left( {{u_n}} \right)\) với \({u_n} = 2n + 1\). 
B. \(\left( {{u_n}} \right)\) với \({u_n} = - 2n + 3\).
C. \(\left( {{u_n}} \right)\) với \({u_n} = \frac{1}{{n + 1}}\).          
D. \(\left( {{u_n}} \right)\) với \({u_n} = \sin \left( {n\pi } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP