Câu hỏi:

03/11/2025 8 Lưu

Dãy số nào dưới đây là một dãy vô hạn?

A. Dãy các số tự nhiên có tận cùng là 5 nhỏ hơn 30.
B. Dãy các số chính phương lẻ nhỏ hơn 100.
C. Dãy các số tự nhiên không chia hết cho 3.
D. Dãy các số tự nhiên chẵn có nhỏ hơn 20.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

Đáp án đúng là: C

Dãy các số tự nhiên không chia hết cho 3 xác định trên \({\mathbb{N}^*}\) nên là một dãy vô hạn.

Ngoài ra:

Dãy các số tự nhiên có tận cùng là 5 nhỏ hơn 30 là dãy số: 5; 15; 25.

Dãy các số chính phương lẻ nhỏ hơn 100 xác định trên tập 1; 9; 25; 49; 81.

Dãy các số tự nhiên chẵn có nhỏ hơn 20 xác định trên tập 2; 4; 6; 8;…; 18.

Các dãy số này đều có hữu hạn số hạng, do đó dãy số này là dãy hữu hạn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải:

Cho tứ giác \(ABCD\) trong đó kh (ảnh 1)

a) *Giao tuyến giữa mặt phẳng \(\left( {SAC} \right)\)\(\left( {SBD} \right)\):

Gọi \(O\) là giao điểm hai đường chéo \(AC\)\(BD\). Ta có:

\(\left. \begin{array}{l}S \in \left( {SAC} \right)\\S \in \left( {SBD} \right)\end{array} \right\} \Rightarrow S\) là điểm chung giữa hai mặt phẳng \(\left( {SAC} \right)\)\(\left( {SBD} \right)\).

\(O \in AC\)\(AC\) nằm trên \(\left( {SAC} \right)\) nên \(O \in \left( {SAC} \right)\).

Tương tự \(O \in \left( {SBD} \right)\), do đó \(O\) cũng là điểm chung giữa hai mặt phẳng \(\left( {SAC} \right)\)\(\left( {SBD} \right)\).

Vậy \(SO\) là giao tuyến giữa hai mặt phẳng \(\left( {SAC} \right)\)\(\left( {SBD} \right)\).

*Giao tuyến giữa mặt phẳng \(\left( {SAB} \right)\)\(\left( {SCD} \right)\):

Gọi \(I\) là giao điểm giữa \(AB\)\(CD\). Ta có:

\(\left. \begin{array}{l}S \in \left( {SAB} \right)\\S \in \left( {SCD} \right)\end{array} \right\} \Rightarrow S\) là điểm chung giữa hai mặt phẳng \(\left( {SAB} \right)\)\(\left( {SCD} \right)\).

\(I \in AB\)\(AB\) nằm trên \(\left( {SAB} \right)\) nên \(I \in \left( {SAB} \right)\).

Tương tự \(I \in \left( {SCD} \right)\), do đó \(I\) cũng là điểm chung giữa hai mặt phẳng \(\left( {SAB} \right)\)\(\left( {SCD} \right)\).

Vậy \(SI\) là giao tuyến giữa hai mặt phẳng \(\left( {SAB} \right)\)\(\left( {SCD} \right)\).

b) Xét mặt phẳng \(\left( {SBD} \right)\) có hai đường thẳng \(SO\)\(BN\) cắt nhau tại \(P\). Khi đó ta có:

\(P \in SO\)\(SO\) nằm trên \(\left( {SAC} \right)\), nên \(P \in \left( {SAC} \right)\). Mà \(P \in BN\) nên \(P\) là giao điểm giữa \(BN\) và mặt phẳng \(\left( {SAC} \right)\).

Câu 2

A. Điểm \(A\) và điểm \(B\).     
B. Điểm \(B\) và điểm \(F\).
C. Điểm \(B\)  và điểm \(D\).     
D. Điểm \(B\) và điểm \(H\).

Lời giải

Hướng dẫn giải:

Đáp án đúng là: C

Ta có:

\[\begin{array}{l}\sqrt 2 \sin x - 1 = 0 \Leftrightarrow \sin x = \frac{1}{{\sqrt 2 }}\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{4} + k2\pi \\x = \pi - \frac{\pi }{4} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{4} + k2\pi \\x = \frac{{3\pi }}{4} + k2\pi \end{array} \right.,k \in \mathbb{Z}\end{array}\].

Nhận thấy điểm biểu diễn \[\frac{\pi }{4} + k2\pi \] trên đường tròn lượng giác là điểm \(B\), điểm biểu diễn \[\frac{{3\pi }}{4} + k2\pi \] trên lượng giác là điểm \(D\).

Do đó điểm \(B\) và điểm \(D\) là các điểm biểu diễn nghiệm của phương trình \[\sqrt 2 \sin x - 1 = 0\] trên đường tròn lượng giác.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Đường thẳng \(SM\). 
B. Đường thẳng \(SA\).
C. Đường thẳng \(AM\).  
D. Đường thẳng \(BC\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left( {{u_n}} \right)\) với \({u_n} = 2n + 1\). 
B. \(\left( {{u_n}} \right)\) với \({u_n} = - 2n + 3\).
C. \(\left( {{u_n}} \right)\) với \({u_n} = \frac{1}{{n + 1}}\).          
D. \(\left( {{u_n}} \right)\) với \({u_n} = \sin \left( {n\pi } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP