Câu hỏi:

03/11/2025 36 Lưu

Cho dãy số \(\left( {{u_n}} \right)\) với \[\left\{ \begin{array}{l}{u_1} = 1,{u_2} = 2\\{u_{n + 2}} = {u_{n + 1}} + {u_n}\end{array} \right.\]. Giá trị của \({u_6}\)

A. 21. 
B. 34. 
C. 13. 
D. 29.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

Đáp án đúng là: C

Ta có: \[{u_3} = {u_1} + {u_2} = 3\], \({u_4} = {u_3} + {u_2} = 3 + 2 = 5\), \({u_5} = 5 + 3 = 8\), \({u_6} = {u_5} + {u_4} = 8 + 5 = 13\).

Vậy giá trị của \({u_6}\) là 13.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải:

Cho tứ giác \(ABCD\) trong đó kh (ảnh 1)

a) *Giao tuyến giữa mặt phẳng \(\left( {SAC} \right)\)\(\left( {SBD} \right)\):

Gọi \(O\) là giao điểm hai đường chéo \(AC\)\(BD\). Ta có:

\(\left. \begin{array}{l}S \in \left( {SAC} \right)\\S \in \left( {SBD} \right)\end{array} \right\} \Rightarrow S\) là điểm chung giữa hai mặt phẳng \(\left( {SAC} \right)\)\(\left( {SBD} \right)\).

\(O \in AC\)\(AC\) nằm trên \(\left( {SAC} \right)\) nên \(O \in \left( {SAC} \right)\).

Tương tự \(O \in \left( {SBD} \right)\), do đó \(O\) cũng là điểm chung giữa hai mặt phẳng \(\left( {SAC} \right)\)\(\left( {SBD} \right)\).

Vậy \(SO\) là giao tuyến giữa hai mặt phẳng \(\left( {SAC} \right)\)\(\left( {SBD} \right)\).

*Giao tuyến giữa mặt phẳng \(\left( {SAB} \right)\)\(\left( {SCD} \right)\):

Gọi \(I\) là giao điểm giữa \(AB\)\(CD\). Ta có:

\(\left. \begin{array}{l}S \in \left( {SAB} \right)\\S \in \left( {SCD} \right)\end{array} \right\} \Rightarrow S\) là điểm chung giữa hai mặt phẳng \(\left( {SAB} \right)\)\(\left( {SCD} \right)\).

\(I \in AB\)\(AB\) nằm trên \(\left( {SAB} \right)\) nên \(I \in \left( {SAB} \right)\).

Tương tự \(I \in \left( {SCD} \right)\), do đó \(I\) cũng là điểm chung giữa hai mặt phẳng \(\left( {SAB} \right)\)\(\left( {SCD} \right)\).

Vậy \(SI\) là giao tuyến giữa hai mặt phẳng \(\left( {SAB} \right)\)\(\left( {SCD} \right)\).

b) Xét mặt phẳng \(\left( {SBD} \right)\) có hai đường thẳng \(SO\)\(BN\) cắt nhau tại \(P\). Khi đó ta có:

\(P \in SO\)\(SO\) nằm trên \(\left( {SAC} \right)\), nên \(P \in \left( {SAC} \right)\). Mà \(P \in BN\) nên \(P\) là giao điểm giữa \(BN\) và mặt phẳng \(\left( {SAC} \right)\).

Câu 2

A. \({u_n} = {5.2^n}\).    
B. \({u_n} = {5.2^{n - 1}}\).      
C. \[{u_n} = {2.5^n}\].         
D. \[{u_n} = {2.5^{n - 1}}\].

Lời giải

Hướng dẫn giải:

Đáp án đúng là: B

Công bội của cấp số nhân là: \(q = \frac{{{u_2}}}{{{u_1}}} = 2\).

Công thức tổng quát của cấp số nhân đó là: \({u_n} = {u_1}.{q^{n - 1}} = {5.2^{n - 1}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(x = k\frac{\pi }{4}\left( {k \in \mathbb{Z}} \right)\).                 
B. \(x = k\pi \left( {k \in \mathbb{Z}} \right)\).
C. \(x = k\frac{\pi }{2}\left( {k \in \mathbb{Z}} \right)\).                 
D. \(x = k\frac{\pi }{6}\left( {k \in \mathbb{Z}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Qua 2 điểm phân biệt ta xác định được duy nhất một mặt phẳng.
B. Qua 3 điểm phân biệt bất kì ta xác định được duy nhất một mặt phẳng.
C. Qua 3 điểm phân biệt không thẳng hàng ta xác định được duy nhất một mặt phẳng.
D. Qua 4 điểm phân biệt bất kì ta xác định được duy nhất một mặt phẳng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP