Cho hàm số \(y = f\left( x \right) = \left\{ \begin{array}{l}\frac{2}{{x - 1}},x \in \left( { - \infty ;2} \right]\\{x^2} - 1,x \in \left( {2;5} \right]\end{array} \right.\). Tính \(f\left( 3 \right)\).
A. \[8\].
Quảng cáo
Trả lời:
Đáp án đúng là: A
\[1\.Ta có \(f\left( 3 \right) = {3^2} - 1 = 8\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: 17,3

Vì \(\Delta AHB\) vuông tại \(H\) nên \(AB = \sqrt {A{H^2} + H{B^2}} = \sqrt {16 + 400} = 4\sqrt {26} \).
Xét \(\Delta AHB\) vuông tại H, ta có \(\sin \widehat {HAB} = \frac{{HB}}{{AB}} = \frac{{20}}{{4\sqrt {26} }} \Rightarrow \widehat {HAB} \approx 78^\circ 41'\).
Suy ra \(\widehat {ABC} = 78^\circ 41'\) (so le trong).
Mà \(\widehat {BAC} = 45^\circ \) nên \(\widehat {ACB} = 56^\circ 19'\).
Áp dụng định lí sin trong tam giác ABC, có
\(\frac{{BC}}{{\sin A}} = \frac{{AB}}{{\sin C}}\)\( \Rightarrow BC = \frac{{AB.\sin A}}{{\sin C}} = \frac{{4\sqrt {26} .\sin 45^\circ }}{{\sin 56^\circ 19'}} \approx 17,3\) m.
Lời giải
Trả lời: 5
Gọi T, L, H lần lượt là tập hợp các học sinh giỏi môn Toán, Lý, Hóa.
Ta có \(\left| {T \cup L \cup H} \right| = \left| T \right| + \left| L \right| + \left| H \right| - \left| {T \cap L} \right| - \left| {L \cap H} \right| - \left| {H \cap T} \right| + \left| {T \cap L \cap H} \right|\)
\( \Leftrightarrow 45 = 25 + 23 + 20 - 11 - 8 - 9 + \left| {T \cap L \cap H} \right| \Leftrightarrow \left| {T \cap L \cap H} \right| = 5\).
Câu 3
A. \(B\backslash A = \left( {3;5} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \[{a^2} = {b^2} + {c^2} - 2bc\cos A\].
B. \[\frac{{\sin A}}{a} = \frac{{\sin B}}{b} = \frac{{\sin C}}{c}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.