Câu hỏi:

04/11/2025 14 Lưu

Hình chóp \(n\) giác thì có

A. \(n + 1\) mặt.      
B. \(2n\) cạnh.         
C. \(n + 1\) đỉnh.   
D. Cả A, B, C đều đúng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

Đáp án đúng là: D

Đa giác đáy có \(n\) đỉnh, và 1 đỉnh của hình chóp nên có \(n + 1\) đỉnh tất cả.

Đa giác đáy có \(n\) cạnh, cứ 2 đỉnh của 1 cạnh kết hợp với đỉnh hình chóp tạo thành 1 mặt phẳng, do đó sẽ có \(n\) mặt bên \( \Rightarrow \) có tất cả \(n + 1\) mặt.

Đa giác đáy có \(n\) đỉnh, cứ mỗi đỉnh của đa giác đáy tạo với đỉnh hình chóp 1 cạnh bên\( \Rightarrow \)\(n\) cạnh bên\( \Rightarrow \)\(2n\) cạnh.

Vậy cả A, B, C đều đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải:

a) \({\sin ^2}3x - \sin 3x - 2 = 0\) (1)

Đặt \(\sin 3x = t\), vì \( - 1 \le \sin 3x \le 1\) nên \( - 1 \le t \le 1\).

Khi đó, \(\left( 1 \right) \Leftrightarrow {t^2} - t - 2 = 0 \Leftrightarrow \left( {t + 1} \right)\left( {t - 2} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}t = - 1\\t = 2\left( {\rm{L}} \right)\end{array} \right.\)

\( \Rightarrow \sin 3x = - 1 \Leftrightarrow 3x = - \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}\)

\( \Leftrightarrow x = - \frac{\pi }{6} + \frac{{k2\pi }}{3},k \in \mathbb{Z}\)

Vậy nghiệm của phương trình là \(S = \left\{ { - \frac{\pi }{6} + \frac{{k2\pi }}{3},k \in \mathbb{Z}} \right\}\).

b) \[\sin x + \sqrt 3 \cos x = 1 \Leftrightarrow \frac{1}{2}\sin x + \frac{{\sqrt 3 }}{2}\cos x = \frac{1}{2}\]

\( \Leftrightarrow \cos \frac{\pi }{3}\sin x + \sin \frac{\pi }{3}\cos x = \frac{1}{2}\)

\( \Leftrightarrow \sin \left( {x + \frac{\pi }{3}} \right) = \frac{1}{2} \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{3} = \frac{\pi }{6} + k2\pi \\x + \frac{\pi }{3} = \frac{{5\pi }}{6} + k2\pi \end{array} \right.,k \in \mathbb{Z}\)

\[ \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{6} + k2\pi \\x = \frac{\pi }{2} + k2\pi \end{array} \right.,k \in \mathbb{Z}\]

Vậy nghiệm của phương trình là \(S = \left\{ { - \frac{\pi }{6} + k2\pi ;\frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}} \right\}\).

c) \(\tan x + \cot x = 2\)(2)

ĐKXĐ: \(\left\{ \begin{array}{l}\sin x \ne 0\\\cos x \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne \frac{\pi }{2} + k\pi \\x \ne k\pi \end{array} \right.,k \in \mathbb{Z} \Leftrightarrow x \ne \frac{{k\pi }}{2},k \in \mathbb{Z}\).

\(\left( 2 \right) \Leftrightarrow \tan x + \frac{1}{{\tan x}} = 2 \Rightarrow {\tan ^2}x + 1 = 2\tan x\)

\( \Leftrightarrow {\tan ^2}x - 2\tan x + 1 = 0 \Leftrightarrow {\left( {\tan x - 1} \right)^2} = 0\)

\( \Leftrightarrow \tan x = 1 \Leftrightarrow x = \frac{\pi }{4} + k\pi ,k \in \mathbb{Z}\) (t/m điều kiện)

Vậy phương trình có tập nghiệm \(S = \left\{ {\frac{\pi }{4} + k\pi ,k \in \mathbb{Z}} \right\}\).

Câu 2

A. \(\cos 2a = {\cos ^2}a - {\sin ^2}a\).  
B. \(\cos 2a = 2{\cos ^2}a + 1\).               
C. \(\cos 2a = {\cos ^2}a + {\sin ^2}a\). 
D. \(\cos 2a = 2{\sin ^2}a - 1\).

Lời giải

Hướng dẫn giải:

Đáp án đúng là: A

\(\cos 2a = {\cos ^2}a - {\sin ^2}a = 2{\cos ^2}a - 1 = 1 - 2{\sin ^2}a\).

Câu 3

A. \(B,M,D,N\) tạo thành một tứ diện.
B. \(B,M,D,N\) tạo thành một tứ giác.
C. \(B,M,D,N\) tạo thành một đường thẳng.
D. Không có kết luận gì.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left[ { - 2;2} \right]\).                     
B. \(\left[ { - 1;1} \right]\).                  
C. \(\left( { - 1;1} \right)\).                   
D. \(\left[ {0;1} \right]\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi \\x = \frac{{2\pi }}{3} + k2\pi \end{array} \right.,k \in \mathbb{Z}\).         
B. \(\left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi \\x = - \frac{\pi }{3} + k2\pi \end{array} \right.,k \in \mathbb{Z}\).   
C. \(\left[ \begin{array}{l}x = \frac{{2\pi }}{3} + k2\pi \\x = - \frac{{2\pi }}{3} + k2\pi \end{array} \right.,k \in \mathbb{Z}\).         
D. \(\left[ \begin{array}{l}x = \frac{\pi }{3} + k\pi \\x = \frac{{2\pi }}{3} + k\pi \end{array} \right.,k \in \mathbb{Z}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP