Câu hỏi:

04/11/2025 15 Lưu

Cho hình chóp \(S.ABCD\), đáy \(ABCD\) là hình bình hành tâm \(O\). Gọi \(M,N\) là trung điểm \(SB,SD\). Trong các mệnh đề sau, mệnh đề nào là sai

A. \(MNDB\) là một tứ giác.                   
B. \(NMBO\) là một tứ giác.                     
C. \(AOMN\) là một tứ diện.                  
D. \(COMN\) là một tứ giác.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

Đáp án đúng là: D

Hướng dẫn giải:  Đáp án đúng là: D (ảnh 1)

Tam giác \(SBD\)\(M,N\) lần lượt là trung điểm \(SB,SD\) nên \(MN\) là đường trung bình tam giác \(SBD \Rightarrow MN{\rm{//}}BD\), khi đó \(MN,BD\) cùng nằm trên một mặt phẳng (mặt phẳng \(\left( {SBD} \right)\))\( \Rightarrow NMBO\) là một tứ giác, \(MNDB\) là tứ giác.

\(M \notin \left( {ABCD} \right)\)\(N \notin \left( {ABCD} \right)\) nên \(MN\) không nằm trên mặt phẳng \(\left( {ABCD} \right)\)

\( \Rightarrow MN\)\(AC\) chéo nhau \( \Rightarrow \) \(AOMN\) là một tứ diện, \(COMN\) là một tứ diện.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải:

a) \({\sin ^2}3x - \sin 3x - 2 = 0\) (1)

Đặt \(\sin 3x = t\), vì \( - 1 \le \sin 3x \le 1\) nên \( - 1 \le t \le 1\).

Khi đó, \(\left( 1 \right) \Leftrightarrow {t^2} - t - 2 = 0 \Leftrightarrow \left( {t + 1} \right)\left( {t - 2} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}t = - 1\\t = 2\left( {\rm{L}} \right)\end{array} \right.\)

\( \Rightarrow \sin 3x = - 1 \Leftrightarrow 3x = - \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}\)

\( \Leftrightarrow x = - \frac{\pi }{6} + \frac{{k2\pi }}{3},k \in \mathbb{Z}\)

Vậy nghiệm của phương trình là \(S = \left\{ { - \frac{\pi }{6} + \frac{{k2\pi }}{3},k \in \mathbb{Z}} \right\}\).

b) \[\sin x + \sqrt 3 \cos x = 1 \Leftrightarrow \frac{1}{2}\sin x + \frac{{\sqrt 3 }}{2}\cos x = \frac{1}{2}\]

\( \Leftrightarrow \cos \frac{\pi }{3}\sin x + \sin \frac{\pi }{3}\cos x = \frac{1}{2}\)

\( \Leftrightarrow \sin \left( {x + \frac{\pi }{3}} \right) = \frac{1}{2} \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{3} = \frac{\pi }{6} + k2\pi \\x + \frac{\pi }{3} = \frac{{5\pi }}{6} + k2\pi \end{array} \right.,k \in \mathbb{Z}\)

\[ \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{6} + k2\pi \\x = \frac{\pi }{2} + k2\pi \end{array} \right.,k \in \mathbb{Z}\]

Vậy nghiệm của phương trình là \(S = \left\{ { - \frac{\pi }{6} + k2\pi ;\frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}} \right\}\).

c) \(\tan x + \cot x = 2\)(2)

ĐKXĐ: \(\left\{ \begin{array}{l}\sin x \ne 0\\\cos x \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne \frac{\pi }{2} + k\pi \\x \ne k\pi \end{array} \right.,k \in \mathbb{Z} \Leftrightarrow x \ne \frac{{k\pi }}{2},k \in \mathbb{Z}\).

\(\left( 2 \right) \Leftrightarrow \tan x + \frac{1}{{\tan x}} = 2 \Rightarrow {\tan ^2}x + 1 = 2\tan x\)

\( \Leftrightarrow {\tan ^2}x - 2\tan x + 1 = 0 \Leftrightarrow {\left( {\tan x - 1} \right)^2} = 0\)

\( \Leftrightarrow \tan x = 1 \Leftrightarrow x = \frac{\pi }{4} + k\pi ,k \in \mathbb{Z}\) (t/m điều kiện)

Vậy phương trình có tập nghiệm \(S = \left\{ {\frac{\pi }{4} + k\pi ,k \in \mathbb{Z}} \right\}\).

Câu 2

A. \(\cos 2a = {\cos ^2}a - {\sin ^2}a\).  
B. \(\cos 2a = 2{\cos ^2}a + 1\).               
C. \(\cos 2a = {\cos ^2}a + {\sin ^2}a\). 
D. \(\cos 2a = 2{\sin ^2}a - 1\).

Lời giải

Hướng dẫn giải:

Đáp án đúng là: A

\(\cos 2a = {\cos ^2}a - {\sin ^2}a = 2{\cos ^2}a - 1 = 1 - 2{\sin ^2}a\).

Câu 3

A. \(B,M,D,N\) tạo thành một tứ diện.
B. \(B,M,D,N\) tạo thành một tứ giác.
C. \(B,M,D,N\) tạo thành một đường thẳng.
D. Không có kết luận gì.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left[ { - 2;2} \right]\).                     
B. \(\left[ { - 1;1} \right]\).                  
C. \(\left( { - 1;1} \right)\).                   
D. \(\left[ {0;1} \right]\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi \\x = \frac{{2\pi }}{3} + k2\pi \end{array} \right.,k \in \mathbb{Z}\).         
B. \(\left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi \\x = - \frac{\pi }{3} + k2\pi \end{array} \right.,k \in \mathbb{Z}\).   
C. \(\left[ \begin{array}{l}x = \frac{{2\pi }}{3} + k2\pi \\x = - \frac{{2\pi }}{3} + k2\pi \end{array} \right.,k \in \mathbb{Z}\).         
D. \(\left[ \begin{array}{l}x = \frac{\pi }{3} + k\pi \\x = \frac{{2\pi }}{3} + k\pi \end{array} \right.,k \in \mathbb{Z}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP