Câu hỏi:

05/11/2025 36 Lưu

Một tháp nước cao 30 m ở trên đỉnh của một ngọn đồi. Từ tháp đến chân ngọn đồi dài 120 m và người ta quan sát thấy góc tạo thành giữa đỉnh và chân tháp là \(8^\circ \). Gọi \(\alpha \) góc nghiêng của ngọn đồi so với phương ngang. Tính gần đúng \(\tan \alpha \) (kết quả được làm tròn đến hàng phần trăm).
Gọi alpha góc nghiêng của ngọn đồi so với phương ngang. Tính gần đúng tan alpha (kết quả được làm tròn đến hàng phần trăm). (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: 1,11

Gọi alpha góc nghiêng của ngọn đồi so với phương ngang. Tính gần đúng tan alpha (kết quả được làm tròn đến hàng phần trăm). (ảnh 2)

Xét tam giác \(ABC\), ta có:

\(\frac{{AB}}{{\sin C}} = \frac{{BC}}{{\sin A}} \Leftrightarrow \frac{{30}}{{\sin 8^\circ }} = \frac{{120}}{{\sin A}} \Rightarrow \sin A = \frac{{120.\sin 8^\circ }}{{30}} \approx 0,557 \Rightarrow \widehat A \approx 34^\circ \).

Suy ra \(\widehat {ACD} = 90^\circ  - 34^\circ  = 56^\circ \).

Góc nghiêng của ngọn đồi so với phương ngang là \(\widehat {BCD} = \widehat {ACD} - \widehat {ACB} = 56^\circ  - 8^\circ  = 48^\circ \).

Vậy \(\tan \alpha  = \tan 48^\circ  \approx 1,11\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đ, b) S, c) S, d) S

Cho hình bình hành ABCD. Gọi I,J lần lượt là trung điểm BC và CD.a) vec AC = vec AB+ vec AD. (ảnh 1)

a) \(\overrightarrow {AC}  = \overrightarrow {AB}  + \overrightarrow {AD} \).

b) \(\overrightarrow {AI}  = \frac{1}{2}\overrightarrow {AC}  + \frac{1}{2}\overrightarrow {AB}  = \frac{1}{2}(\overrightarrow {AB}  + \overrightarrow {AC} )\).

c) \(\overrightarrow {AI}  = \frac{1}{2}(\overrightarrow {AB}  + \overrightarrow {AB}  + \overrightarrow {AD} )\)\( = \overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AD} \).

d) \(\overrightarrow {AJ}  = \frac{1}{2}(\overrightarrow {AD}  + \overrightarrow {AC} ) = \frac{1}{2}\overrightarrow {AD}  + \frac{1}{2}(\overrightarrow {AB}  + \overrightarrow {AD} ) = \frac{1}{2}\overrightarrow {AB}  + \overrightarrow {AD} .\)

Lời giải

a) S, b) Đ, c) Đ, d) S

a) Ta có \(\cot \alpha  =  - \frac{1}{3}\)\( \Rightarrow \tan \alpha  = \frac{1}{{\cot \alpha }} =  - 3\).

b) Có \(\cot \alpha  < 0\) và \(0^\circ  < \alpha  < 180^\circ \) nên \(\alpha  \in \left( {90^\circ ;180^\circ } \right)\).

c) Có \(1 + {\cot ^2}\alpha  = \frac{1}{{{{\sin }^2}\alpha }}\)\( \Rightarrow \sin \alpha  =  \pm \frac{1}{{\sqrt {1 + {{\cot }^2}\alpha } }} =  \pm \frac{1}{{\sqrt {1 + {{\left( {\frac{{ - 1}}{3}} \right)}^2}} }} =  \pm \frac{{3\sqrt {10} }}{{10}}\).

Do \(0^\circ  < \alpha  < 180^\circ \) nên \(\sin \alpha  > 0\). Vậy \(\sin \alpha  = \frac{{3\sqrt {10} }}{{10}}\).

d) \(P = \frac{{2\sin \alpha  - 3\cos \alpha }}{{3\sin \alpha  + 2\cos \alpha }}\)\( = \frac{{2\tan \alpha  - 3}}{{3\tan \alpha  + 2}}\)\( = \frac{{2.\left( { - 3} \right) - 3}}{{3.\left( { - 3} \right) + 2}} = \frac{9}{7}\).

Câu 6

A. \(y =  - {x^2} + 4x - 3\). 

B. \(2{x^2} - 8x + 7.\)  

C. \(y = {x^2} - 4x + 5.\)  
D. \(y = \frac{1}{2}{x^2} - 2x + 1.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP