Câu hỏi:

05/11/2025 157 Lưu

Một vật chuyển động có vận tốc (mét/giây) được biểu diễn theo thời gian \(t\) (giây) bằng công thức \(v(t) = \frac{1}{2}{t^2} - 4t + 10\). Trong 10 giây đầu tiên, vận tốc của vật đạt giá trị nhỏ nhất bằng bao nhiêu m/s?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: 2

Xét \(v(t) = \frac{1}{2}{t^2} - 4t + 10\) với \( - \frac{b}{{2a}} = 4,a = \frac{1}{2} > 0\) nên bề lõm parabol hướng lên.

Bảng biến thiên của \(v(t)\) :

Trong 10 giây đầu tiên, vận tốc của vật đạt giá trị nhỏ nhất bằng bao nhiêu m/s? (ảnh 1)

Vậy, ở giây thứ tư thì vận tốc của vật đạt giá trị nhỏ nhất là \(v{(t)_{\min }} = 2\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đ, b) S, c) S, d) S

Cho hình bình hành ABCD. Gọi I,J lần lượt là trung điểm BC và CD.a) vec AC = vec AB+ vec AD. (ảnh 1)

a) \(\overrightarrow {AC}  = \overrightarrow {AB}  + \overrightarrow {AD} \).

b) \(\overrightarrow {AI}  = \frac{1}{2}\overrightarrow {AC}  + \frac{1}{2}\overrightarrow {AB}  = \frac{1}{2}(\overrightarrow {AB}  + \overrightarrow {AC} )\).

c) \(\overrightarrow {AI}  = \frac{1}{2}(\overrightarrow {AB}  + \overrightarrow {AB}  + \overrightarrow {AD} )\)\( = \overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AD} \).

d) \(\overrightarrow {AJ}  = \frac{1}{2}(\overrightarrow {AD}  + \overrightarrow {AC} ) = \frac{1}{2}\overrightarrow {AD}  + \frac{1}{2}(\overrightarrow {AB}  + \overrightarrow {AD} ) = \frac{1}{2}\overrightarrow {AB}  + \overrightarrow {AD} .\)

Lời giải

a) Đ, b) Đ, c) S, d) Đ

a) \(a > 0.\)

b) Toạ độ đỉnh \(I(2; - 1)\), trục đối xứng \(x = 2.\)

c) Đồng biến trên khoảng \((2; + \infty )\); Nghịch biến trên khoảng \(( - \infty ;2)\).

d) \(x\) thuộc các khoảng \(( - \infty ;1)\) và \((3; + \infty )\) thì \(f(x) > 0\).

Câu 4

A. Đồ thị hàm số là một đường thẳng.

B. Đồ thị hàm số là một Parabol.

C. Hàm số đồng biến trên \(\mathbb{R}\).

D. Hàm số nghịch biến trên \(\mathbb{R}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP