Câu hỏi:

05/11/2025 100 Lưu

Khi một quả bóng được đá lên nó sẽ đạt độ cao nào đó rồi rơi xuống đất. Biết quỹ đạo của quả bóng là một đường parabol trong mặt phẳng toạ độ \(Oxy\) có phương trình \(h = a{t^2} + bt + c\left( {a < 0} \right)\) trong đó \(t\) là thời gian (tính bằng giây) kể từ khi quả bóng được đá lên và \(h\) là độ cao (tính bằng mét) của quả bóng. Giả thiết rằng quả bóng được đá lên từ độ cao 1m và sau 1 giây thì nó đạt độ cao \(6,5{\rm{m}}\);sau 4 giây nó đạt độ cao \(5{\rm{m}}\). Tính tổng \(2a + b + c\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: 5

Theo giả thiết ta có hệ phương trình \(\left\{ \begin{array}{l}c = 1\\a{.1^2} + b.1 + c = 6,5\\a{.4^2} + b.4 + c = 5\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a =  - \frac{3}{2}\\b = 7\\c = 1\end{array} \right.\).

Do đó \(2a + b + c =  - 3 + 7 + 1 = 5\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đ, b) S, c) S, d) S

Cho hình bình hành ABCD. Gọi I,J lần lượt là trung điểm BC và CD.a) vec AC = vec AB+ vec AD. (ảnh 1)

a) \(\overrightarrow {AC}  = \overrightarrow {AB}  + \overrightarrow {AD} \).

b) \(\overrightarrow {AI}  = \frac{1}{2}\overrightarrow {AC}  + \frac{1}{2}\overrightarrow {AB}  = \frac{1}{2}(\overrightarrow {AB}  + \overrightarrow {AC} )\).

c) \(\overrightarrow {AI}  = \frac{1}{2}(\overrightarrow {AB}  + \overrightarrow {AB}  + \overrightarrow {AD} )\)\( = \overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AD} \).

d) \(\overrightarrow {AJ}  = \frac{1}{2}(\overrightarrow {AD}  + \overrightarrow {AC} ) = \frac{1}{2}\overrightarrow {AD}  + \frac{1}{2}(\overrightarrow {AB}  + \overrightarrow {AD} ) = \frac{1}{2}\overrightarrow {AB}  + \overrightarrow {AD} .\)

Lời giải

a) Đ, b) Đ, c) S, d) Đ

a) \(a > 0.\)

b) Toạ độ đỉnh \(I(2; - 1)\), trục đối xứng \(x = 2.\)

c) Đồng biến trên khoảng \((2; + \infty )\); Nghịch biến trên khoảng \(( - \infty ;2)\).

d) \(x\) thuộc các khoảng \(( - \infty ;1)\) và \((3; + \infty )\) thì \(f(x) > 0\).

Câu 5

A. Đồ thị hàm số là một đường thẳng.

B. Đồ thị hàm số là một Parabol.

C. Hàm số đồng biến trên \(\mathbb{R}\).

D. Hàm số nghịch biến trên \(\mathbb{R}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP