Câu hỏi:

05/11/2025 26 Lưu

Cho góc α \(\left( {0^\circ  < \alpha  < 180^\circ } \right)\) thỏa mãn  \(\cot \alpha  =  - \frac{1}{3}\).

a) \(\tan \alpha  = 3\).

b) \(\alpha \) là góc tù.

c) \(\sin \alpha  = \frac{{3\sqrt {10} }}{{10}}\).

d) Giá trị của biểu thức \(P = \frac{{2\sin \alpha  - 3\cos \alpha }}{{3\sin \alpha  + 2\cos \alpha }}\) bằng \(\frac{1}{5}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) S, b) Đ, c) Đ, d) S

a) Ta có \(\cot \alpha  =  - \frac{1}{3}\)\( \Rightarrow \tan \alpha  = \frac{1}{{\cot \alpha }} =  - 3\).

b) Có \(\cot \alpha  < 0\) và \(0^\circ  < \alpha  < 180^\circ \) nên \(\alpha  \in \left( {90^\circ ;180^\circ } \right)\).

c) Có \(1 + {\cot ^2}\alpha  = \frac{1}{{{{\sin }^2}\alpha }}\)\( \Rightarrow \sin \alpha  =  \pm \frac{1}{{\sqrt {1 + {{\cot }^2}\alpha } }} =  \pm \frac{1}{{\sqrt {1 + {{\left( {\frac{{ - 1}}{3}} \right)}^2}} }} =  \pm \frac{{3\sqrt {10} }}{{10}}\).

Do \(0^\circ  < \alpha  < 180^\circ \) nên \(\sin \alpha  > 0\). Vậy \(\sin \alpha  = \frac{{3\sqrt {10} }}{{10}}\).

d) \(P = \frac{{2\sin \alpha  - 3\cos \alpha }}{{3\sin \alpha  + 2\cos \alpha }}\)\( = \frac{{2\tan \alpha  - 3}}{{3\tan \alpha  + 2}}\)\( = \frac{{2.\left( { - 3} \right) - 3}}{{3.\left( { - 3} \right) + 2}} = \frac{9}{7}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 2

Xét \(v(t) = \frac{1}{2}{t^2} - 4t + 10\) với \( - \frac{b}{{2a}} = 4,a = \frac{1}{2} > 0\) nên bề lõm parabol hướng lên.

Bảng biến thiên của \(v(t)\) :

Trong 10 giây đầu tiên, vận tốc của vật đạt giá trị nhỏ nhất bằng bao nhiêu m/s? (ảnh 1)

Vậy, ở giây thứ tư thì vận tốc của vật đạt giá trị nhỏ nhất là \(v{(t)_{\min }} = 2\).

Lời giải

a) S, b) S, c) Đ, d) S

a) Hệ trên là hệ bất phương trình bậc nhất hai ẩn.

b) Ta thấy tọa độ điểm \(\left( {4;1} \right)\) không thỏa mãn hệ nên \(\left( {4;1} \right)\) không thuộc miền nghiệm của hệ.

c) Miền nghiệm của hệ như hình vẽ

a) Hệ trên không là hệ bất phương trình bậc nhất hai ẩn.  b) Cặp (4;1) thuộc miền nghiệm của hệ. (ảnh 2)

d) Ta có \(F\left( O \right) = 2024,F\left( H \right) = 2032,F\left( G \right) = 2030,F\left( E \right) = \frac{{6100}}{3}\) nên biểu thức \(F\left( {x;y} \right) = 3x + 4y + 2024\) đạt giá trị lớn nhất là tại \(\left( {\frac{4}{3};\frac{4}{3}} \right)\).

Câu 4

A. \(2x - 5y + 3z \le 0\). 

B. \(3{x^2} + 2x - 4 > 0\).  

C. \(2{x^2} + 5y > 3\). 
D. \(2x + 3y < 5\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP