Cho ba lực \(\overrightarrow {{F_1}} = \overrightarrow {MB} ,\overrightarrow {{F_2}} = \overrightarrow {MA} ,\overrightarrow {{F_3}} = \overrightarrow {MC} \) cùng tác động vào một vật tại điểm M và vật đứng yên. Biết cường độ của \(\overrightarrow {{F_1}} \) và \(\overrightarrow {{F_2}} \) lần lượt là 28 N và 45 N. Tìm cường độ của lực \(\overrightarrow {{F_3}} \) biết \(\widehat {AMB} = 90^\circ \).

Quảng cáo
Trả lời:
Trả lời: 53
Do vật đứng yên nên ta có \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow 0 \Rightarrow \overrightarrow {{F_3}} = - \left( {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} } \right)\).
Dựng hình chữ nhật \(AMBD\). Theo quy tắc hình bình hành ta có \(\overrightarrow {MD} = \overrightarrow {MA} + \overrightarrow {MB} = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} \).
Suy ra \(\overrightarrow {{F_3}} = - \overrightarrow {MD} \) nên \({F_3} = MD = \sqrt {M{A^2} + M{B^2}} = \sqrt {{{28}^2} + {{45}^2}} = 53\)(N).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đ, b) S, c) S, d) S
a) \(\overrightarrow {AC} = \overrightarrow {AB} + \overrightarrow {AD} \).
b) \(\overrightarrow {AI} = \frac{1}{2}\overrightarrow {AC} + \frac{1}{2}\overrightarrow {AB} = \frac{1}{2}(\overrightarrow {AB} + \overrightarrow {AC} )\).
c) \(\overrightarrow {AI} = \frac{1}{2}(\overrightarrow {AB} + \overrightarrow {AB} + \overrightarrow {AD} )\)\( = \overrightarrow {AB} + \frac{1}{2}\overrightarrow {AD} \).
d) \(\overrightarrow {AJ} = \frac{1}{2}(\overrightarrow {AD} + \overrightarrow {AC} ) = \frac{1}{2}\overrightarrow {AD} + \frac{1}{2}(\overrightarrow {AB} + \overrightarrow {AD} ) = \frac{1}{2}\overrightarrow {AB} + \overrightarrow {AD} .\)
Lời giải
a) S, b) Đ, c) Đ, d) S
a) Ta có \(\cot \alpha = - \frac{1}{3}\)\( \Rightarrow \tan \alpha = \frac{1}{{\cot \alpha }} = - 3\).
b) Có \(\cot \alpha < 0\) và \(0^\circ < \alpha < 180^\circ \) nên \(\alpha \in \left( {90^\circ ;180^\circ } \right)\).
c) Có \(1 + {\cot ^2}\alpha = \frac{1}{{{{\sin }^2}\alpha }}\)\( \Rightarrow \sin \alpha = \pm \frac{1}{{\sqrt {1 + {{\cot }^2}\alpha } }} = \pm \frac{1}{{\sqrt {1 + {{\left( {\frac{{ - 1}}{3}} \right)}^2}} }} = \pm \frac{{3\sqrt {10} }}{{10}}\).
Do \(0^\circ < \alpha < 180^\circ \) nên \(\sin \alpha > 0\). Vậy \(\sin \alpha = \frac{{3\sqrt {10} }}{{10}}\).
d) \(P = \frac{{2\sin \alpha - 3\cos \alpha }}{{3\sin \alpha + 2\cos \alpha }}\)\( = \frac{{2\tan \alpha - 3}}{{3\tan \alpha + 2}}\)\( = \frac{{2.\left( { - 3} \right) - 3}}{{3.\left( { - 3} \right) + 2}} = \frac{9}{7}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(y = - {x^2} + 4x - 3\).
B. \(2{x^2} - 8x + 7.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


