Câu hỏi:

05/11/2025 8 Lưu

PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Một trò chơi chọn ô chữ đơn giản mà kết quả gồm một trong hai khả năng: Nếu người chơi chọn được chữ \(A\) thì người ấy được cộng 3 điểm, nếu người chơi chọn được chữ \(B\) thì người ấy bị trừ 1 điểm. Người chơi chỉ chiến thắng khi đạt được số điểm tối thiểu là 20 . Gọi \(x,y\) theo thứ tự là số lần người chơi chọn được chữ \(A\) và chữ \(B\). Khi đó:

a) Tổng số điểm người chơi đạt được khi chọn chữ \(A\) là \(3x\), tổng số điểm người chơi bị trừ khi chọn chữ \(B\) là \(y\).

b) Bất phương trình bậc nhất hai ẩn \(x,y\) trong tình huống người chơi chiến thắng là \(3x - y \ge 18.\)

c) Người chơi chọn được chữ \(A\) 7 lần và chọn được chữ \(B\) 1 lần thì người đó vừa đủ điểm dành chiến thắng trò chơi.

d) Người chơi chọn được chữ \(A\) 8 lần và chọn được chữ \(B\) 4 lần thì người đó vừa đủ điểm dành chiến thắng trò chơi.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đ, b) S, c) Đ, d) Đ

a) Tổng số điểm người chơi đạt được khi chọn chữ \(A\) là \(3x\), tổng số điểm người chơi bị trừ khi chọn chữ \(B\) là \(y\).

b) Với \(x,y \in \mathbb{N}\), ta có bất phương trình: \(3x - y \ge 20\quad (*)\).

c) Thay cặp số \((7;1)\) vào bất phương trình \((*):3.7 - 1 \ge 20\) (đúng), suy ra \((7;1)\) là một nghiệm của \((*)\). Điều này cho thấy nếu người chơi chọn được chữ \(A\) 7 lần và chọn được chữ \(B\) 1 lần thì người đó vừa đủ điểm dành chiến thắng trò chơi.

d) Thay cặp số \((8;4)\) vào bất phương trình \((*):3.8 - 4 \ge 20\) (đúng), suy ra \((8;4)\) là một nghiệm của \((*)\). Điều này cho thấy nếu người chơi chọn được chữ \(A\) 8 lần và chọn được chữ \(B\) 4 lần thì người đó vừa đủ điểm dành chiến thắng trò chơi.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 1

Gọi \(x\) là số bàn tiệc thực tế trong đám cưới ( \(x\) nguyên dương và \(x \in [30;35]\) ) và \(y\) (triệu đồng) là số tiền mà người đó phải trả cho nhà hàng.

Nếu đăng ký tại nhà hàng thứ nhất, người đó sẽ trả tiền theo công thức: \(y = 2x + 20\).

Với \(x \in [30;35]\) thì \(y \in [80;90]\), tức là người đó phải trả khoản tiền khoảng 80 triệu đến 90 triệu cho nhà hàng thứ nhất.

Nếu đăng ký tại nhà hàng thứ hai, người đó sẽ trả tiền theo công thức: \(y = 2,5x + 10\).

Với \(x \in [30;35]\) thì \(y \in [85;97,5]\), tức là người đó phải trả khoản tiền khoảng 85 triệu đến 97,5 triệu cho nhà hàng thứ hai.

Vậy, nếu chất lượng phục vụ hai nhà hàng là tương đương, người đó nên chọn nhà hàng thứ nhất để tiết kiệm một khoản chi phí tiệc cưới.

Lời giải

Trả lời: 1295

Gọi \(x,y\) ( \(x \ge 0;y \ge 0\)) lần lượt là số thùng bánh gạo được nhà phân phối chuyển từ kho phía Đông tới hai đại lí \(A\) và \(B.\)

Khi đó \(50 - x;70 - y\)lần lượt là số thùng bánh gạo được nhà phân phối chuyển từ kho phía Tây tới hai đại lí \(A\) và \(B.\)

Ta có hệ bất phương trình

\(\left\{ \begin{array}{l}x + y \le 80\\50 - x + 70 - y \le 45\\0 \le x \le 50\\0 \le y \le 70\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x + y \le 80\\x + y \ge 75\\0 \le x \le 50\\0 \le y \le 70\end{array} \right.\)

Tổng chi phí giao hàng

\(F\left( {x;y} \right) = 10x + 12y + (50 - x).9 + (70 - y).11{\rm{ }} = {\rm{ }}1220 + x + y{\rm{      }}\)

Miền nghiệm biểu diễn là miền tứ giác \(ABCD\)có \(A\left( {5;70} \right);B\left( {10;70} \right);C\left( {50;30} \right);D\left( {50;25} \right)\)

Chi phí vận chuyển là nhỏ nhất nhà phân phối cần phải trả là bao nhiêu nghìn đồng? (ảnh 1)

Tính giá trị của \(F\left( {x;y} \right)\) tại các đỉnh \(A,B,C,D\)ta tìm được GTNN là \(F\left( {5;70} \right) = F\left( {50;25} \right) = 1295\).

Câu 4

A. \(\left\{ {2;3} \right\}\).  

B. \(\left\{ 3 \right\}\).
C. \(\left\{ {3;5} \right\}\).  
D. \(\left\{ {2;3;5} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\overrightarrow {AB}  + \overrightarrow {AC}  = \overrightarrow {AM} \).

B. \(\overrightarrow {AG}  = \frac{1}{3}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right)\).

C. \(\overrightarrow {AG}  = \frac{3}{4}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right)\).
D. \(\overrightarrow {AG}  = \frac{1}{3}\overrightarrow {AM} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(y = {x^2} - 3x + 1\).  

B. \(y = 2{x^2} - 3x + 1\).

C. \(y =  - {x^2} + 3x - 1\).  
D. \(y =  - 2{x^2} + 3x - 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP