Câu hỏi:

05/11/2025 146 Lưu

(1,0 điểm) Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành tâm \(O\). Gọi \(M,\,\,N\) lần lượt là trung điểm của \(AD\)\(SB\).

a) Tìm giao tuyến của hai mặt phẳng \((SAB)\)\((SCD)\).

b) Chứng minh \(ON\) song song với mặt phẳng \[(SAD)\].

c) Tìm giao điểm của đường thẳng \(MN\) và mặt phẳng \((SAC)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho hình chóp \(S.ABC (ảnh 1)

a) Xét hai mặt phẳng \((SAB)\)\((SCD)\)\(S\) là điểm chung của hai mặt phẳng.

Mặt khác \(\left\{ \begin{array}{l}AB\,{\rm{//}}\,CD\\AB \subset (SAB)\\CD\, \subset \,(SCD)\end{array} \right.\).

Gọi \(Sx\) là đường thẳng qua \(S\) và song song với \(AB\) và CD.

Do đó giao tuyến của hai mặt phẳng \((SAB)\)\((SCD)\) là đường thẳng đi qua \(Sx\).

b) Xét tam giác \(SBD\)\(ON\,{\rm{//}}\,SD\) (vì \(O,\,\,N\) lần lượt là trung điểm của \(BD\)\(SB\)).

\(SD\, \subset \,(SCD)\) nên \(ON\,{\rm{//}}\,\,(SCD)\).

c) Xét mặt phẳng \((ABCD)\).

Gọi \(I\) là giao điểm của \(AC\)\(BM\).

Xét hai mặt phẳng \((SAC)\)\((SBM)\).

Ta có \((SAC) \cap (SBM) = SI\).

Gọi \(J\) là giao điểm của \(SI\)\(MN\).

Khi đó \(\left\{ \begin{array}{l}J \in SI \subset (SAC)J \in (SAC)\\J \in MN\end{array} \right.\).

Vậy \(J\) là giao điểm của \(MN\) và mặt phẳng \((SAC)\).

 c) Chọn mặt phẳng \((SAC)\) chứa \(NC\). Tìm giao tuyến của \((SAC)\)\((SMQ)\):

Ta có \(\left\{ \begin{array}{l}S \in (SAC) \cap (SMQ)\\AC\,{\rm{//}}\,MQ,\,\,AC \subset (SAC),\,\,MQ \subset (SMQ)\end{array} \right.\).

Do đó \[(SAC) \cap (SMQ) = Sx\,{\rm{//}}\,AC\,{\rm{//}}\,MQ\].

Trong mặt phẳng \((SAC)\), gọi \(J = CN \cap Sx\).

Ta có \(\left\{ \begin{array}{l}J \in CN\\J \in Sx \subset (SMQ)\end{array} \right. \Rightarrow J = CN \cap (SMQ)\)

Vậy \(J\) là giao điểm của đường thẳng \(CN\) và mặt phẳng \((SMQ)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\overrightarrow {AB} \)\(\overrightarrow {BI} \) cùng hướng;                                                         
B. \(\overrightarrow {AB} \)\(\overrightarrow {AI} \) cùng hướng;
C. \(\overrightarrow {AI} \)\(\overrightarrow {IB} \) ngược hướng;                                                      
D. \(\overrightarrow {AI} \)\(\overrightarrow {BI} \) không cùng phương.

Lời giải

Đáp án đúng là: B

Đáp án đúng là: B (ảnh 1)

Ta có: \(A\), \(I\), \(B\) cùng thuộc đường thẳng \(AB\) nên \(\overrightarrow {AB} \)\(\overrightarrow {AI} \) cùng phương.

Và chúng cùng hướng từ trái sang phải.

Do đó, \(\overrightarrow {AB} \)\(\overrightarrow {AI} \) cùng hướng.

Câu 2

A. \( - \frac{3}{4}\overrightarrow {AB} + \frac{3}{4}\overrightarrow {AC} \);                 
B. \(\frac{3}{4}\overrightarrow {AB} + \frac{3}{4}\overrightarrow {AC} \);
C. \( - \frac{3}{4}\overrightarrow {AB} - \frac{3}{4}\overrightarrow {AC} \);                 
D. \(\frac{1}{4}\overrightarrow {AB} + \frac{3}{4}\overrightarrow {AC} \).

Lời giải

Đáp án đúng là: A

Đáp án đúng là: D (ảnh 1)

Xét tam giác \(ABC\) có:

\(BM = \frac{1}{4}AB \Rightarrow AM = \frac{3}{4}AB \Rightarrow \overrightarrow {MA} = - \frac{3}{4}\overrightarrow {AB} \)

\(AN = \frac{3}{4}AC \Rightarrow \,\overrightarrow {AN} = \frac{3}{4}\overrightarrow {AC} \)

Vậy \(\overrightarrow {MN} = \overrightarrow {MA} + \overrightarrow {AN} = - \frac{3}{4}\overrightarrow {AB} + \frac{3}{4}\overrightarrow {AC} \).

Câu 3

A. \(\left( {1;2} \right)\);                                    
B. \(\left( {4;5} \right)\);                      
C. \(\left( {10;30} \right)\);            
D. \(\left( { - 5;10} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Nửa mặt phẳng có bờ là đường thẳng \(3x - y = 1\) không chứa điểm \(\left( {0;0} \right)\) (không kể bờ);
B. Nửa mặt phẳng có bờ là đường thẳng \(3x - y = 1\) chứa điểm \(\left( {0;0} \right)\) (có kể bờ);
C. Nửa mặt phẳng có bờ là đường thẳng \(3x - y = 1\) không chứa điểm \(\left( {0;0} \right)\) (có kể bờ);
D. Nửa mặt phẳng có bờ là đường thẳng \(3x - y = 1\) không chứa điểm \(\left( {0;0} \right)\)(không kể bờ).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Tồn tại một số nguyên \(x\) để \(x\) chia hết cho 5;
B. Mọi số nguyên \(x\) chia hết cho 5;
C. Tồn tại một số nguyên \(x\) để \(x\) không chia hết cho 5;
D. Mọi số nguyên \(x\) không chia hết cho 5.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left( { - 1;6} \right)\)                                   
B. \(\left( {45;69} \right)\);         
C. \(\left( {23;34} \right)\);                      
D. \(\left( {1;50} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left[ {3;5} \right]\);                                     
B. \(\left( {3;5} \right)\);                      
C. \(\left[ {1;3} \right]\); 
D. \(\left[ {1;58} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP