Tập nghiệm \(S\) của phương trình \({2^{{x^2} + 7x + 10}} = 1\) là
Tập nghiệm \(S\) của phương trình \({2^{{x^2} + 7x + 10}} = 1\) là
A. \(S = \left\{ {2;5} \right\}\).
B. \(S = \left\{ { - 5; - 2} \right\}\).
C. \(S = \left\{ { - 5;2} \right\}\).
D. \(S = \left\{ {\frac{{ - 7 - \sqrt {13} }}{2};\frac{{ - 7 + \sqrt {13} }}{2}} \right\}\).
Quảng cáo
Trả lời:
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Ta có \({3^{3x + 1}} < \frac{1}{9} \Leftrightarrow {3^{3x + 1}} < {3^{ - 2}} \Leftrightarrow 3x + 1 < - 2 \Leftrightarrow x < - 1\).
Vậy tập nghiệm của bất phương trình là \(S = \left( { - \infty ; - 1} \right)\). Chọn D.
Lời giải
Gọi \(S\) là giá trị còn lại của một chiếc ô tô sau t năm sử dụng và được tính bởi công thức:\(S = {S_0}{\left( {0,94} \right)^t}\), trong đó \({S_0}\) là giá trị ban đầu của ô tô.
Xét phương trình: \(800.{\left( {0,94} \right)^t} < 600 \Leftrightarrow {\left( {0,94} \right)^t} < 0,75 \Leftrightarrow t > {\log _{0,94}}\left( {0,75} \right) \approx 4,65\).
Vậy sau khoảng \(5\) năm sử dụng thì giá trị còn lại của một chiếc ô tô đó nhỏ hơn \[600\] triệu đồng.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.