Một điện thoại đang nạp pin, dung lượng pin nạp được tính theo công thức mũ như sau \(Q\left( t \right) = {Q_o} \cdot \left( {1 - {e^{ - \frac{{3t}}{2}}}} \right)\), với \(t\) là khoảng thời gian tính bằng giờ và \({Q_o}\) là dung lượng nạp tối đa. Hãy tính thời gian nạp pin của điện thoại tính từ lúc cạn pin cho đến khi điện thoại đạt được \(80\% \) dung lượng pin tối đa (làm tròn kết quả đến hàng phần trăm theo đơn vị giờ).
Một điện thoại đang nạp pin, dung lượng pin nạp được tính theo công thức mũ như sau \(Q\left( t \right) = {Q_o} \cdot \left( {1 - {e^{ - \frac{{3t}}{2}}}} \right)\), với \(t\) là khoảng thời gian tính bằng giờ và \({Q_o}\) là dung lượng nạp tối đa. Hãy tính thời gian nạp pin của điện thoại tính từ lúc cạn pin cho đến khi điện thoại đạt được \(80\% \) dung lượng pin tối đa (làm tròn kết quả đến hàng phần trăm theo đơn vị giờ).
Quảng cáo
Trả lời:
Theo giả thiết, ta có phương trình:
\(\frac{{80}}{{100}}{Q_o} = {Q_o} \cdot \left( {1 - {e^{ - \frac{{3t}}{2}}}} \right) \Rightarrow {e^{ - \frac{{3t}}{2}}} = \frac{1}{5} \Rightarrow - \frac{{3t}}{2} = - \ln 5 \Rightarrow t \approx 1,07{\rm{ }}\)giờ.
Vậy thời gian nạp pin của điện thoại là khoảng 1,07 giờ.
Đáp án: 1,07.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \({m_0}\) là khối lượng của \({}_6^{14}C\) trong cây tại thời điểm cây còn sống \(\left( {t = 0} \right)\).
Khi đó, khối lượng \(m\left( t \right)\) của \({}_6^{14}C\) trong cây sau khi chết \(t\) (năm) được tính bởi công thức:\(m\left( t \right) = {m_o}{\left( {\frac{1}{2}} \right)^{\frac{t}{{5730}}}}\).
Theo giả thiết, ta có: \(\frac{{m\left( t \right)}}{{{m_o}}} = {\left( {\frac{1}{2}} \right)^{\frac{t}{{5730}}}} = 0,75\).
Do đó \(\frac{t}{{5730}} = {\log _{0,5}}\left( {0,75} \right) \Leftrightarrow t \approx 2378\).
Vậy mẫu gỗ cổ đó đã chết cách đây bao nhiêu \[2378\] năm.
Đáp án: 2378.
Câu 2
Lời giải
Ta có \({3^{3x + 1}} < \frac{1}{9} \Leftrightarrow {3^{3x + 1}} < {3^{ - 2}} \Leftrightarrow 3x + 1 < - 2 \Leftrightarrow x < - 1\).
Vậy tập nghiệm của bất phương trình là \(S = \left( { - \infty ; - 1} \right)\). Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.