Sự tăng trưởng của một loài vi khuẩn tuân theo công thức \(S = A \cdot {e^{rt}}\), với \[A\] là số lượng vi khuẩn ban đầu, r là tỉ lệ tăng trưởng \[\left( {r > 0} \right)\], \[t\] là thời gian tăng trưởng. Biết rằng số lượng vi khuẩn ban đầu là 250 con và sau 12 giờ là 1500 con. Sau bao nhiêu giờ thì số lượng vi khuẩn tăng gấp 1296 lần số lượng vi khuẩn ban đầu?
Quảng cáo
Trả lời:
Theo bài ra, ta có \(1500 = 250 \cdot {e^{r \cdot 12}} \Rightarrow r = \frac{{\ln 6}}{{12}}\).
Gọi t (giờ) là thời gian để số lượng vi khuẩn tăng gấp 1296 lần số lượng vi khuẩn ban đầu.
Khi đó, ta có \(1296{A_0} = {A_0}.{e^{rt}} \Rightarrow r.t = \ln 1296\)\( \Rightarrow t = \frac{{\ln 1296}}{r} = 48\).
Đáp án: 48.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(S\) là giá trị còn lại của một chiếc ô tô sau t năm sử dụng và được tính bởi công thức:\(S = {S_0}{\left( {0,94} \right)^t}\), trong đó \({S_0}\) là giá trị ban đầu của ô tô.
Xét phương trình: \(800.{\left( {0,94} \right)^t} < 600 \Leftrightarrow {\left( {0,94} \right)^t} < 0,75 \Leftrightarrow t > {\log _{0,94}}\left( {0,75} \right) \approx 4,65\).
Vậy sau khoảng \(5\) năm sử dụng thì giá trị còn lại của một chiếc ô tô đó nhỏ hơn \[600\] triệu đồng.
Lời giải
Gọi \({m_0}\) là khối lượng của \({}_6^{14}C\) trong cây tại thời điểm cây còn sống \(\left( {t = 0} \right)\).
Khi đó, khối lượng \(m\left( t \right)\) của \({}_6^{14}C\) trong cây sau khi chết \(t\) (năm) được tính bởi công thức:\(m\left( t \right) = {m_o}{\left( {\frac{1}{2}} \right)^{\frac{t}{{5730}}}}\).
Theo giả thiết, ta có: \(\frac{{m\left( t \right)}}{{{m_o}}} = {\left( {\frac{1}{2}} \right)^{\frac{t}{{5730}}}} = 0,75\).
Do đó \(\frac{t}{{5730}} = {\log _{0,5}}\left( {0,75} \right) \Leftrightarrow t \approx 2378\).
Vậy mẫu gỗ cổ đó đã chết cách đây bao nhiêu \[2378\] năm.
Đáp án: 2378.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.