Cho \(A\) và \(B\) là hai biến cố độc lập thoả mãn \(P\left( A \right) = 0,5\) và \(P\left( B \right) = 0,3\). Khi đó, \(P\left( {A \cap B} \right)\) bằng:
Cho \(A\) và \(B\) là hai biến cố độc lập thoả mãn \(P\left( A \right) = 0,5\) và \(P\left( B \right) = 0,3\). Khi đó, \(P\left( {A \cap B} \right)\) bằng:
Quảng cáo
Trả lời:
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Tần số lớn nhất là 12 nên nhóm chứa mốt là \[\left[ {40;60} \right)\].
Do đó \({M_o} = 40 + \frac{{12 - 9}}{{2 \cdot 12 - 9 - 10}} \cdot 20 = 52\). Chọn A.
Lời giải
Nhận thấy đồ thị chỉ có 2 đỉnh bậc lẻ (vị trí cửa vào và nhà hát) nên ta có thể tìm được một đường đi Euler từ cửa vào đến nhà hát (đường này đi qua mỗi cạnh đúng một lần).
Ta có một đường đi Euler xuất phát từ cửa vào đến nhà hát như sau: cửa vào → nhà bóng → nhà ăn → nhà mưa → nhà bóng → nhà hát → cửa vào → nhà mưa → nhà hát.
Tổng độ dài của con đường trên là: \(140 + 145 + 80 + 60 + 90 + 165 + 80 + 80 = 840\) (m).
Để quay trở lại điểm xuất phát và có đường đi ngắn nhất, ta cần tìm con đường ngắn nhất đi từ nhà hát đến cửa vào, đường đi ngắn nhất là: nhà hát → nhà mưa → cửa vào và đường đi này có độ dài là \(80 + 80 = 160\) (m).
Vậy quãng đường ngắn nhất cần tìm có độ dài là: \(840 + 160 = 1000\) (m).
Đáp án: 1000.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

