Khảo sát những người xem bộ phim hoạt hình vừa được phát hành cho thấy \(70\% \) người xem là trẻ em và \(30\% \) là người lớn. Trong số các trẻ em đến xem phim có \(50\% \) yêu thích bộ phim và khẳng định sẽ đi xem tiếp phần 2, \(30\% \) yêu thích bộ phim nhưng sẽ không xem tiếp phần 2; \(20\% \) còn lại không thích bộ phim và không xem tiếp phần 2. Trong số những người lớn đi xem phim có \(20\% \) yêu thích bộ phim và khẳng định sẽ xem tiếp phần 2, \(10\% \) yêu thích bộ phim nhưng sẽ không xem tiếp phần 2; \(70\% \) còn lại không thích bộ phim và không xem tiếp phần 2. Chọn ngẫu nhiên 1 người đã xem phim.
a) Biết người được chọn là trẻ em, xác suất để người đó yêu thích bộ phim là \(0,56\).
b) Xác suất để người đó không xem tiếp phần 2 là \(0,59\).
c) Biết người đó sẽ xem tiếp phần 2 của bộ phim, xác suất để người đó là trẻ em lớn hơn \(0,85\).
d) Biết người đó yêu thích bộ phim, xác suất để người đó không xem tiếp phần 2 là \(0,37\) (làm tròn đến hàng phần trăm).
Quảng cáo
Trả lời:
Gọi \(A\) là biến cố “Người đó là trẻ em”, \(B\) là biến cố “Người đó thích bộ phim” và \(C\) là biến cố “Người đó xem tiếp phần 2 bộ phim”.
Xét người đi xem là trẻ em có \(P\left( A \right) = 70\% = 0,7\).
Theo đề, ta có \(P\left( {BC} \right) = 50\% = 0,5\); \(P\left( {B\overline C } \right) = 30\% = 0,3\); \[P\left( {\overline B \overline C } \right) = 20\% = 0,2\]; \[P\left( {\overline B C} \right) = 0\].
Xét người đi xem là người lớn có \(P\left( {\overline A } \right) = 30\% = 0,3\).
Theo đề, ta có \(P\left( {BC} \right) = 20\% = 0,2\); \(P\left( {B\overline C } \right) = 10\% = 0,1\); \[P\left( {\overline B \overline C } \right) = 70\% = 0,7\]; \[P\left( {\overline B C} \right) = 0\].
a) Sai. Ta có \(P\left( {B|A} \right) = 0,5 + 0,3 = 0,8\).
b) Đúng. Ta có \(\overline C = \overline C AB \cup \overline C A\overline B \cup \overline C \overline A B \cup \overline C \overline A \overline B \).
\(P\left( {\overline C } \right) = P\left( {\overline C AB} \right) + P\left( {\overline C A\overline B } \right) + P\left( {\overline C \overline A B} \right) + P\left( {\overline C \overline A \overline B } \right)\)
\( = 0,7 \cdot 0,3 + 0,7 \cdot 0,2 + 0,3 \cdot 0,1 + 0,3 \cdot 0,7 = 0,59\).
c) Đúng. Ta có \(P\left( C \right) = 1 - P\left( {\overline C } \right) = 0,41\).
\(P\left( {A|C} \right) = \frac{{P\left( {AC} \right)}}{{P\left( C \right)}}\).
\(P\left( {AC} \right) = P\left( {AC\overline B } \right) + P\left( {ACB} \right) = 0,7 \cdot 0 + 0,7 \cdot 0,5 = 0,35\).
Suy ra \(P\left( {A|C} \right) = \frac{{P\left( {AC} \right)}}{{P\left( C \right)}} = \frac{{0,35}}{{0,41}} \approx 0,854 > 0,85\).
d) Đúng. \[P\left( {\overline C |B} \right) = \frac{{P\left( {\overline C B} \right)}}{{P\left( B \right)}}\]
\(P\left( {\overline C B} \right) = P\left( {\overline C BA} \right) + P\left( {\overline C B\overline A } \right) = 0,3 \cdot 0,7 + 0,1 \cdot 0,3 = 0,24\).
\(P\left( B \right) = P\left( {BA\overline C } \right) + P\left( {BAC} \right) + P\left( {B\overline A C} \right) + P\left( {B\overline A \overline C } \right)\)
\( = 0,7 \cdot 0,3 + 0,7 \cdot 0,5 + 0,3 \cdot 0,2 + 0,3 \cdot 0,1 = 0,65\).
Suy ra \[P\left( {\overline C |B} \right) = \frac{{0,24}}{{0,65}} \approx 0,37\].
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(X,Y,Z\) tương ứng là các biến cố: Công ty trúng thầu dự án \(X,\,Y,\,Z\).
Các biến \(X,Y,Z\) độc lập và \(P\left( X \right) = a;\,\,P\left( Y \right) = b;\,\,P\left( Z \right) = 0,8\).
Theo bài ra ta có: \(\left\{ \begin{array}{l}P\left( {X \cup Y \cup Z} \right) = 0,964\\P\left( {X \cap Y \cap Z} \right) = 0,224\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}P\left( {\bar X \cap \bar Y \cap \bar Z} \right) = 0,036\\P\left( {X \cap Y \cap Z} \right) = 0,224\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}P\left( {\bar X} \right)P\left( {\bar Y} \right)P\left( {\bar Z} \right) = 0,036\\P\left( X \right)P\left( Y \right)P\left( Z \right) = 0,224\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left( {1 - a} \right)\left( {1 - b} \right)\left( {1 - 0,8} \right) = 0,036\\0,8 \cdot a \cdot b = 0,224\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}ab = 0,28\\a + b = 1,1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 0,7\\b = 0,4\end{array} \right.\) (do điều kiện \(a > b\)).
Vậy \(2a + b = 1,8.\)
Câu 2
Lời giải
Tần số lớn nhất là 12 nên nhóm chứa mốt là \[\left[ {40;60} \right)\].
Do đó \({M_o} = 40 + \frac{{12 - 9}}{{2 \cdot 12 - 9 - 10}} \cdot 20 = 52\). Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
