Câu hỏi:

06/11/2025 84 Lưu

Một công viên thuê sinh viên tuần tra các con đường và thu gom rác. Các con đường phải tuần tra thể hiện trong sơ đồ dưới đây, với các khoảng cách tính bằng mét. Con đường nối từ nhà bóng tới nhà hát đi dưới một cây cầu nằm trên con đường nối từ nhà mưa tới cửa vào. Biết rằng sinh viên xuất phát từ cửa vào, đi qua tất cả các con đường để tuần tra và dọn rác và kết thúc công việc cũng ở cửa vào. Hỏi quãng đường ngắn nhất mà sinh viên đó đi là bao nhiêu mét?

Media VietJack

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Nhận thấy đồ thị chỉ có 2 đỉnh bậc lẻ (vị trí cửa vào và nhà hát) nên ta có thể tìm được một đường đi Euler từ cửa vào đến nhà hát (đường này đi qua mỗi cạnh đúng một lần).

Ta có một đường đi Euler xuất phát từ cửa vào đến nhà hát như sau: cửa vào → nhà bóng → nhà ăn → nhà mưa → nhà bóng → nhà hát → cửa vào → nhà mưa → nhà hát.

Tổng độ dài của con đường trên là: \(140 + 145 + 80 + 60 + 90 + 165 + 80 + 80 = 840\) (m).

Để quay trở lại điểm xuất phát và có đường đi ngắn nhất, ta cần tìm con đường ngắn nhất đi từ nhà hát đến cửa vào, đường đi ngắn nhất là: nhà hát → nhà mưa → cửa vào và đường đi này có độ dài là \(80 + 80 = 160\) (m).

Vậy quãng đường ngắn nhất cần tìm có độ dài là: \(840 + 160 = 1000\) (m).

Đáp án: 1000.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có bảng dưới đây:

Lương (triệu đồng)

\(\left[ {5\,;11} \right)\)

\(\left[ {11\,;17} \right)\)

\(\left[ {17;23} \right)\)

\(\left[ {23;29} \right)\)

\(\left[ {29\,;35} \right)\)

Giá trị đại diện

8

14

20

26

32

Số nhân viên

15

14

7

12

10

Cỡ mẫu: \(n = 15 + 14 + 7 + 12 + 10 = 58\).

Số trung bình của mẫu số liệu: \(\bar x = \frac{{15 \cdot 8 + 14 \cdot 14 + 7 \cdot 20 + 12 \cdot 26 + 10 \cdot 32}}{{58}} = \frac{{544}}{{29}}\).

Phương sai:

\(\begin{array}{l}{s^2} = \frac{1}{{58}}\left[ {15 \cdot {{\left( {8 - 18,76} \right)}^2} + 14 \cdot {{\left( {14 - 18,76} \right)}^2} + 7 \cdot {{\left( {20 - 18,76} \right)}^2}} \right.\\\left. {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + 12 \cdot {{\left( {26 - 18,76} \right)}^2} + 10 \cdot {{\left( {32 - 18,76} \right)}^2}} \right] = \frac{{64476}}{{841}}.\end{array}\)

Độ lệch chuẩn: \(s = \sqrt {{s^2}} = \sqrt {\frac{{64476}}{{841}}} \approx 8,76\). Chọn B.

Lời giải

Gọi \(X,Y,Z\) tương ứng là các biến cố: Công ty trúng thầu dự án \(X,\,Y,\,Z\).

Các biến \(X,Y,Z\) độc lập và \(P\left( X \right) = a;\,\,P\left( Y \right) = b;\,\,P\left( Z \right) = 0,8\).

Theo bài ra ta có: \(\left\{ \begin{array}{l}P\left( {X \cup Y \cup Z} \right) = 0,964\\P\left( {X \cap Y \cap Z} \right) = 0,224\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}P\left( {\bar X \cap \bar Y \cap \bar Z} \right) = 0,036\\P\left( {X \cap Y \cap Z} \right) = 0,224\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}P\left( {\bar X} \right)P\left( {\bar Y} \right)P\left( {\bar Z} \right) = 0,036\\P\left( X \right)P\left( Y \right)P\left( Z \right) = 0,224\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left( {1 - a} \right)\left( {1 - b} \right)\left( {1 - 0,8} \right) = 0,036\\0,8 \cdot a \cdot b = 0,224\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}ab = 0,28\\a + b = 1,1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 0,7\\b = 0,4\end{array} \right.\) (do điều kiện \(a > b\)).

Vậy \(2a + b = 1,8.\)