Câu hỏi:

12/11/2025 39 Lưu

Cho đường thẳng \(\left( d \right):y = mx - 2\;\,\left( {m \ne 5} \right).\) Biết rằng đường thẳng \(\left( d \right)\) có hệ số góc bằng \( - 1.\) Gọi \(A,\;\,B\) lần lượt là giao điểm của đường thẳng \(\left( d \right)\) với trục tung và trục hoành.

a) \(\left( d \right):\;\,y = - x - 2.\)
Đúng
Sai
b) \(A\left( {0;\;\,2} \right).\)
Đúng
Sai
c) \(B\left( { - 2;\;\,0} \right).\)
Đúng
Sai
d) \(\Delta OAB\) là tam giác vuông cân
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng.

đường thẳng \(\left( d \right)\) có hệ số góc bằng \( - 1\) nên \(m = - 1\) (thỏa mãn). Vậy \(\left( d \right):\;\,y = - x - 2.\)

b) Sai.

\(A\) là giao điểm của đường thẳng \(\left( d \right)\) với trục tung nên hoành độ của điểm \(A\) bằng 0.

Do đó, \(y = - 0 - 2,\) suy ra \(y = - 2.\) Vậy \(A\left( {0;\;\, - 2} \right).\)

c) Đúng.

\(B\) là giao điểm của đường thẳng \(\left( d \right)\) với trục hoành nên tung độ của điểm \(B\) bằng 0.

Do đó, \(0 = - x - 2,\) suy ra \(x = - 2.\) Vậy \(B\left( { - 2;\;\,0} \right).\)

d) Đúng.

Vẽ đường thẳng \(\left( d \right)\) trên mặt phẳng tọa độ \(Oxy\) ta được:

Media VietJack

Ta thấy: \(\Delta OAB\) là tam giác vuông và \(OA = OB = 2.\) Do đó, tam giác \(\Delta OAB\) là tam giác vuông cân.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(b \ne 0.\)   
B. \(a < 0.\)       
C. \(a > 0.\)               
D. \(a \ne 0.\)

Lời giải

Đáp án đúng là: C

Góc tạo bởi đường thẳng \(y = ax + b\) và trục hoành là góc nhọn khi \(a > 0.\)

Câu 2

A. \(a = 0.\)                
B. \(a > 0.\)                   
C. \(a < 0.\)                  
D. \(a < - 2.\)

Lời giải

Đáp án đúng là: B

Vì góc tạo bởi đường thẳng \(\left( d \right)\) và trục \(Ox\) là góc nhọn nên \(a > 0.\)

Câu 3

a) Hệ số góc của đường thẳng \(\left( d \right)\) là số dương

Đúng
Sai
b) \(B\left( {0;\;\,3} \right),\;\,C\left( {3;\;\,0} \right).\)
Đúng
Sai
c) Tam giác \(BOC\) là tam giác vuông cân.
Đúng
Sai
d) Góc tạo bởi đồ thị hàm số đã cho và trục hoành bằng \(45^\circ .\)
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP