Cho tứ giác \(ABCD\) có \(AB = 4\;\,{\rm{cm,}}\;\,AD = 6\;\,{\rm{cm,}}\;\,BD = 8\;\,{\rm{cm,}}\;\,BC = 12\;\,{\rm{cm,}}\;\,CD = 16\;\,{\rm{cm}}{\rm{.}}\)
Quảng cáo
Trả lời:

a) Sai.
Vì \(\frac{4}{8} = \frac{6}{{12}} = \frac{8}{{16}}\;\,\left( { = \frac{1}{2}} \right)\) nên \(\frac{{AB}}{{BD}} = \frac{{AD}}{{BC}} = \frac{{BD}}{{DC}}.\)
b) Đúng.
\(\Delta ABD\) và \(\Delta BDC\) có: \(\frac{{AB}}{{BD}} = \frac{{AD}}{{BC}} = \frac{{BD}}{{DC}}\;\,\left( {{\rm{cmt}}} \right)\) nên \(\Delta ABD \sim \Delta BDC\;\,\left( {{\rm{c}}{\rm{.c}}{\rm{.c}}} \right).\)
Vậy \(\Delta ABD \sim \Delta BDC\) với tỉ số đồng dạng là \(\frac{{AB}}{{BD}} = 0,5.\)
c) Sai.
Vì \[\Delta ABD \sim \Delta BDC\;\,\left( {{\rm{cmt}}} \right)\] nên \(\widehat {ABD} = \widehat {BDC}\) (hai góc tương ứng).
d) Sai.
Tứ giác \(ABCD\) có: \(\widehat {ABD} = \widehat {BDC},\) mà hai góc này ở vị trí so le trong nên \(AB\;{\rm{//}}\;CD.\)
Vậy tứ giác \(ABCD\) là hình thang có \(DC\) là đáy lớn.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải

a) Sai.
Vì \(OA \cdot OC = OB \cdot OD\) nên \(\frac{{OA}}{{OB}} = \frac{{OD}}{{OC}}.\)
b) Đúng.
\(\Delta AOD\) và \(\Delta BOC\) có: \(\frac{{OA}}{{OB}} = \frac{{OD}}{{OC}},\;\,\widehat O\) chung nên \(\Delta AOD \sim \Delta BOC\;\,\left( {{\rm{c}}{\rm{.g}}{\rm{.c}}} \right).\)
c) Sai.
Vì \(\Delta AOD \sim \Delta BOC\) nên \(\widehat {EAC} = \widehat {EBD}.\)
\(\Delta ACE\) và \(\Delta BDE\) có: \(\widehat {EAC} = \widehat {EBD},\;\,\widehat {AEC} = \widehat {BED}\) (hai góc đối đỉnh).
Do đó, \(\Delta ACE \sim \Delta BDE\;\,\left( {{\rm{g}}{\rm{.g}}} \right).\)
d) Đúng.
Vì \(\Delta ACE \sim \Delta BDE\) nên \(\frac{{AE}}{{BE}} = \frac{{CE}}{{DE}}\) suy ra \(AE \cdot ED = CE \cdot EB.\)
Câu 2
Lời giải
a) Đúng.
\(\Delta AMN\) và \(\Delta ACB\) có: \(\widehat {ANM} = \widehat {ABC},\;\,\widehat A\) chung nên \(\Delta AMN \sim \Delta ACB\;\,\left( {{\rm{g}}{\rm{.g}}} \right).\)
b) Sai.
Vì \(\Delta AMN \sim \Delta ACB\) nên \(\frac{{AN}}{{AB}} = \frac{{AM}}{{AC}}.\) Suy ra \(\frac{{AN}}{{AM}} = \frac{{AB}}{{AC}}.\)
c) Đúng.
\(\Delta ANB\) và \(\Delta AMC\) có: \(\frac{{AN}}{{AM}} = \frac{{AB}}{{AC}};\;\,\widehat A\) chung nên \(\Delta ANB \sim \Delta AMC\;\,\left( {{\rm{c}}{\rm{.g}}{\rm{.c}}} \right).\) Suy ra \(\widehat {OBM} = \widehat {OCN}.\)
d) Sai.
\(\Delta MOB\) và \(\Delta CON\) có: \(\widehat {OBM} = \widehat {OCN};\;\,\widehat {MOB} = \widehat {NOC}\) (hai góc đối đỉnh).
Suy ra \(\Delta MOB \sim \Delta NOC\;\,\left( {{\rm{g}}{\rm{.g}}} \right).\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


