Câu hỏi:

13/11/2025 16 Lưu

Cho \(\widehat {xOy},\) trên tia \(Ox\) lấy các điểm \(A,\;\,C;\) trên tia \(Oy\) lấy các điểm \(B,\;\,D\) sao cho \(OA \cdot OC = OB \cdot OD.\) Gọi \(E\) là giao điểm của \(AD\)\(BC.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Media VietJack

a) Sai.

\(OA \cdot OC = OB \cdot OD\) nên \(\frac{{OA}}{{OB}} = \frac{{OD}}{{OC}}.\)

b) Đúng.

\(\Delta AOD\) và \(\Delta BOC\) có: \(\frac{{OA}}{{OB}} = \frac{{OD}}{{OC}},\;\,\widehat O\) chung nên \(\Delta AOD \sim \Delta BOC\;\,\left( {{\rm{c}}{\rm{.g}}{\rm{.c}}} \right).\)

c) Sai.

\(\Delta AOD \sim \Delta BOC\) nên \(\widehat {EAC} = \widehat {EBD}.\)

\(\Delta ACE\) và \(\Delta BDE\) có: \(\widehat {EAC} = \widehat {EBD},\;\,\widehat {AEC} = \widehat {BED}\) (hai góc đối đỉnh).

Do đó, \(\Delta ACE \sim \Delta BDE\;\,\left( {{\rm{g}}{\rm{.g}}} \right).\)

d) Đúng.

\(\Delta ACE \sim \Delta BDE\) nên \(\frac{{AE}}{{BE}} = \frac{{CE}}{{DE}}\) suy ra \(AE \cdot ED = CE \cdot EB.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(4\)

\(\Delta OCE\)\(\Delta DCA\) có: \(\widehat E = \widehat A,\;\,\widehat {ECO} = \widehat {DCA}\) (hai góc đối đỉnh).

Do đó, \(\Delta OCE \sim \Delta DCA\;\,\left( {{\rm{g}}{\rm{.g}}} \right).\)

Suy ra: \(\widehat D = \widehat O = 90^\circ \) và \(\frac{{OE}}{{DA}} = \frac{{OC}}{{CD}} = \frac{{EC}}{{CA}} = \frac{4}{8} = \frac{1}{2}.\)

Diện tích \(\Delta OCE\) vuông tại \(O\) là: \({S_{OCE}} = \frac{1}{2}OE \cdot OC.\)

Diện tích \(\Delta DCA\) vuông tại \(D\) là: \({S_{DCA}} = \frac{1}{2}DA \cdot CD.\)

Ta có: \(\frac{{{S_{DCA}}}}{{{S_{OCE}}}} = \frac{{\frac{1}{2}DA \cdot CD}}{{\frac{1}{2}OE \cdot OC}} = \frac{{DA}}{{OE}} \cdot \frac{{CD}}{{OC}} = 2 \cdot 2 = 4.\)

Suy ra, diện tích \(\Delta ACD\) gấp 4 lần diện tích tích \(\Delta OCE.\)

Câu 2

A. Nếu hai cạnh của tam giác này tỉ lệ với hai cạnh của tam giác kia thì hai tam giác đó đồng dạng với nhau.          
B. Nếu ba cạnh của tam giác này tỉ lệ với ba cạnh của tam giác kia thì hai tam giác đó bằng nhau.       
C. Nếu ba cạnh của tam giác này tỉ lệ với ba cạnh của tam giác kia thì hai tam giác đó đồng dạng với nhau.                                     
  D. Nếu hai cạnh của tam giác này tỉ lệ với hai cạnh của tam giác kia và hai tam giác đó có hai góc bằng nhau thì hai tam giác đó đồng dạng với nhau.

Lời giải

Đáp án đúng là: C

Khẳng định đúng là: Nếu ba cạnh của tam giác này tỉ lệ với ba cạnh của tam giác kia thì hai tam giác đó đồng dạng với nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\widehat {ADE} = \frac{2}{3}\widehat C.\)      
B. \(\widehat {ADE} = \frac{3}{4}\widehat C.\)    
C. \(\widehat {ADE} = \widehat C.\) 
D. \(\widehat C = \frac{3}{4}\widehat {ADE}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\widehat C = \widehat B.\)   
B. \(\widehat C = \frac{2}{3}\widehat B.\)                 
C. \(\widehat B = \frac{2}{3}\widehat C.\)  
D. \(\widehat B = \frac{3}{4}\widehat C.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP