10 Bài tập Chứng minh các tính chất hình học (có lời giải)
54 người thi tuần này 4.6 436 lượt thi 10 câu hỏi 45 phút
🔥 Đề thi HOT:
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
20 câu trắc nghiệm Toán 8 Kết nối tri thức Ôn tập chương I (Đúng sai - trả lời ngắn) có đáp án
Trắc nghiệm Bài tập cơ bản Những hằng đẳng thức đáng nhớ có đáp án
6 câu Trắc nghiệm Toán 8 Bài 11: Hình thoi có đáp án (Vận dụng)
2 câu Trắc nghiệm Toán 8 Bài 10: Đường thẳng song song với một đường thẳng cho trước có đáp án (Vận dụng cao)
3 câu Trắc nghiệm Toán 8 Bài 12: Hình vuông có đáp án (Vận dụng)
8 câu Trắc nghiệm Toán 8: Ôn tập chương 2 có đáp án (Vận dụng)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
A. Trong tam giác vuông, cạnh huyền là cạnh lớn nhất;
B. Trong tam giác vuông, cạnh huyền là cạnh bé nhất;
C. Trong tam giác vuông, cạnh góc vuông bằng cạnh huyền;
Lời giải
Hướng dẫn giải:
Đáp án đúng là: D
Vẽ tam giác ABC vuông tại A.

Áp dụng định lí Pythagore vào tam giác vuông ABC ta được:
BC2 = AC2 + AB2
Þ AC < BC, AB < BC
Mà BC là cạnh huyền và AB, AC là các cạnh góc vuông.
Vậy trong giác vuông cạnh huyền là cạnh lớn nhất.
Câu 2
A. HB > HC thì AB > AC;
B. HB > HC thì AB = AC;
C. HB < HC thì AB > AC;
Lời giải
Hướng dẫn giải:
Đáp án đúng là: A
Áp dụng định lí Pythagore trong tam giác vuông AHB và AHC ta có:
AB2 = AH2 + BH2
AC2 = AH2 + CH2
+) Nếu BH < CH thì AB < AC.
+) Nếu BH > CH thì AB > AC.
Vậy khẳng định đúng là HB > HC thì AB > AC.
Câu 3
A. AH < BH;
B. AH < AB;
C. AH > BH;
Lời giải
Hướng dẫn giải:
Đáp án đúng là: C

Áp dụng định lí Pythagore vào tam giác HBA vuông ở B ta có:
AH2 = BH2 + AB2
Þ AH > AB, AH > BH.
Câu 4
A. Nếu HB < HC thì BD > DC;
B. Nếu HB < HC thì BD < DC;
C. Nếu HB = HC thì BD < DC;
Lời giải
Hướng dẫn giải:
Đáp án đúng là: B
*) Áp dụng định lí Pythagore vào tam giác vuông AHB và AHC ta có:
AB2 = AH2 + BH2
AC2 = AH2 + CH2
Vì AB < AC nên BH < CH.
*) Áp dụng định lí Pythagore vào tam giác vuông BHD và BHC ta có:
BD2 = BH2 + DH2
CD2 = CH2 + DH2
Vì BH < CH nên BD < CD.
Câu 5
A. Chỉ có (I) đúng;
B. Chỉ có (II) đúng;
C. Cả (I) và (II) đều đúng;
Lời giải
Hướng dẫn giải:
Đáp án đúng là: A

+) Vì tam giác AHB vuông nên AH < AB.
+) Vì tam giác ACH vuông nên AH < AC.
Þ Khẳng định (I) đúng.
+) Áp dụng định lí Pythagore vào tam giác vuông AHB và AHC ta được:
AB2 = AH2 + BH2
AC2 = AH2 + CH2
Nếu AB2 < AC2 thì AB < AC. Suy ra, BH < CH.
Nếu AB2 > AC2 thì AB > AC. Suy ra, BH > CH.
Do đó, BH < CH hoặc BH > CH.
Þ Khẳng định (II) sai.
Câu 6
A. BC vuông góc MH;
B. BC trùng với MH;
C. BC song song với MH;
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
A. Vì HD < HC < HE nên AD > AC > AE;
B. Vì HD > HC > HE nên AD > AC > AE;
C. Vì HD < HC < HE nên AD < AC < AE;
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
A. MA > MH;
B. HB < HC;
C. MA = MB;
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.




