Câu hỏi:

29/11/2023 192

Cho điểm A không nằm trên d, kẻ AHd tại H, B và C là các điểm tuỳ ý nằm trên d và khác H. Xét các khẳng định sau:

(I) AH < AB và AH < AC

(II) HB < HC

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Đáp án đúng là: A

Cho điểm A không nằm trên d, kẻ AH vuông góc d tại H, B và C là các điểm tuỳ ý nằm trên d và khác H. Xét các khẳng định sau: (ảnh 1)

+) Vì tam giác AHB vuông nên AH < AB.

+) Vì tam giác ACH vuông nên AH < AC.

Þ Khẳng định (I) đúng.

+) Áp dụng định lí Pythagore vào tam giác vuông AHB và AHC ta được:

AB2 = AH2 + BH2

AC2 = AH2 + CH2

Nếu AB2 < AC2 thì AB < AC. Suy ra, BH < CH.

Nếu AB2 > AC2 thì AB > AC. Suy ra, BH > CH.

Do đó, BH < CH hoặc BH > CH.

Þ Khẳng định (II) sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải:

Đáp án đúng là: D

Vẽ tam giác ABC vuông tại A.

Nhận xét nào sau đây là đúng?  A. Trong tam giác vuông, cạnh huyền là cạnh lớn nhất; (ảnh 1)

Áp dụng định lí Pythagore vào tam giác vuông ABC ta được:

BC2 = AC2 + AB2

Þ AC < BC, AB < BC

Mà BC là cạnh huyền và AB, AC là các cạnh góc vuông.

Vậy trong giác vuông cạnh huyền là cạnh lớn nhất.

Câu 2

Lời giải

Hướng dẫn giải:

Đáp án đúng là: D

+) Tam giác AMH vuông tại H nên MA > MH.

Þ khẳng định A đúng.

+) Vì B nằm giữa hai điểm H và C nên HB < HC.

Þ khẳng định B đúng.

+) Xét tam giác MAB có MH vuông góc với AB và H là trung điểm của AB.

Þ Tam giác MAB cân tại M

Þ MA = MB

Þ khẳng định C đúng.

+) Áp dụng định lí Pythagore vào tam giác vuông MHB và MHC ta có:

MB2 = MH2 + HB2

MC2 = MH2 + HC2

Vì HB < HC nên MB < MC.

Mà MA = MC nên MA < MC.

Þ khẳng định D sai.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP