Câu hỏi:
29/11/2023 192
Cho điểm A không nằm trên d, kẻ tại H, B và C là các điểm tuỳ ý nằm trên d và khác H. Xét các khẳng định sau:
(I) AH < AB và AH < AC
(II) HB < HC
Cho điểm A không nằm trên d, kẻ tại H, B và C là các điểm tuỳ ý nằm trên d và khác H. Xét các khẳng định sau:
(I) AH < AB và AH < AC
(II) HB < HC
Quảng cáo
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: A

+) Vì tam giác AHB vuông nên AH < AB.
+) Vì tam giác ACH vuông nên AH < AC.
Þ Khẳng định (I) đúng.
+) Áp dụng định lí Pythagore vào tam giác vuông AHB và AHC ta được:
AB2 = AH2 + BH2
AC2 = AH2 + CH2
Nếu AB2 < AC2 thì AB < AC. Suy ra, BH < CH.
Nếu AB2 > AC2 thì AB > AC. Suy ra, BH > CH.
Do đó, BH < CH hoặc BH > CH.
Þ Khẳng định (II) sai.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải:
Đáp án đúng là: D
Vẽ tam giác ABC vuông tại A.

Áp dụng định lí Pythagore vào tam giác vuông ABC ta được:
BC2 = AC2 + AB2
Þ AC < BC, AB < BC
Mà BC là cạnh huyền và AB, AC là các cạnh góc vuông.
Vậy trong giác vuông cạnh huyền là cạnh lớn nhất.
Lời giải
Hướng dẫn giải:
Đáp án đúng là: D
+) Tam giác AMH vuông tại H nên MA > MH.
Þ khẳng định A đúng.
+) Vì B nằm giữa hai điểm H và C nên HB < HC.
Þ khẳng định B đúng.
+) Xét tam giác MAB có MH vuông góc với AB và H là trung điểm của AB.
Þ Tam giác MAB cân tại M
Þ MA = MB
Þ khẳng định C đúng.
+) Áp dụng định lí Pythagore vào tam giác vuông MHB và MHC ta có:
MB2 = MH2 + HB2
MC2 = MH2 + HC2
Vì HB < HC nên MB < MC.
Mà MA = MC nên MA < MC.
Þ khẳng định D sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.