Câu hỏi:

13/11/2025 13 Lưu

Cho \(\Delta ABC\) có đường cao \(AH.\) Biết rằng \(HB = 4\;{\rm{m, }}AB = \sqrt {80} \;{\rm{m,}}\;AC = 10\;{\rm{m}}{\rm{.}}\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

 

Media VietJack

a) Đúng.

\(AH\) là đường cao của \(\Delta ABC\) nên \(AH \bot BC.\) Do đó, \(\Delta ABH\) vuông tại \(H.\)

Nên \(A{H^2} + H{B^2} = A{B^2}\) (định lí Pythagore), suy ra \(A{H^2} = A{B^2} - H{B^2} = {\left( {\sqrt {80} } \right)^2} - {4^2} = 64.\)

Suy ra \(AH = \sqrt {64} = 8\;{\rm{m}}{\rm{.}}\) Vậy \(AH = 8\;{\rm{m}}{\rm{.}}\)

b) Sai.

\(AH \bot BC\) nên \(\Delta ACH\) vuông tại \(H.\)

Suy ra \(A{H^2} + H{C^2} = A{C^2}\) (định lí Pythagore), suy ra \(C{H^2} = A{C^2} - A{H^2} = {10^2} - 64 = 36.\)  

Suy ra \(CH = \sqrt {36} = 6\;{\rm{m}}{\rm{.}}\) Vậy \(CH = 6\;{\rm{m}}{\rm{.}}\)

c) Sai.

Chu vi \(\Delta AHC\) là: \({P_1} = AH + HC + AC = 8 + 6 + 10 = 24\;\left( {\rm{m}} \right).\)

Vậy chu vi \(\Delta AHC\) bằng \(24\;{\rm{m}}{\rm{.}}\)

d) Sai.

Ta có: \(BC = BH + CH = 4 + 6 = 10\;\left( {\rm{m}} \right).\)

Chu vi \(\Delta ABC\) là: \({P_2} = AC + AB + BC = 10 + \sqrt {80} + 10 = 20 + \sqrt {80} \;\left( {\rm{m}} \right).\)

Ta có: \({P_2} - {P_1} = 20 + \sqrt {80} - 24 = \sqrt {80} - 4 \approx 5\;\left( {\rm{m}} \right).\)

Vậy chu vi \(\Delta ABC\) lớn hơn chu vi \(\Delta AHC\) khoảng \(5\;{\rm{m}}{\rm{.}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(14,1\)

Media VietJack

Vẽ \(\Delta ABC\) như trong hình vẽ trên. Ta có: \(AC = 10\;{\rm{m,}}\;BC = 40 - 30 = 10\;{\rm{m}}{\rm{.}}\)

Áp dụng định lí Pythagore vào \(\Delta ABC\) vuông tại \(C\) ta có:

\(A{B^2} = A{C^2} + B{C^2} = {10^2} + {10^2} = 200\) nên \(AB = \sqrt {200} \approx 14,1\;\left( {\rm{m}} \right).\)

Vậy khoảng cách giữa hai điểm \(A\)\(B\) trong hình vẽ bằng khoảng \(14,1\;{\rm{m}}{\rm{.}}\)

Lời giải

Đáp án đúng là: C

Trong một tam giác, nếu bình phương của một cạnh bằng tổng bình phương của hai cạnh còn lại thì tam giác đó là tam giác vuông.

Câu 3

A. \(QR = PR - PQ.\) 
B. \(Q{R^2} = P{R^2} - P{Q^2}.\)
C. \(Q{R^2} = P{R^2} + P{Q^2}.\)            
D. \(Q{R^2} = P{R^2} \cdot P{Q^2}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\widehat A = 90^\circ .\)    
B. \(\widehat A = 80^\circ .\)  
C. \(\widehat A = 100^\circ .\)    
D. \(\widehat A = 110^\circ .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\widehat N = 30^\circ .\)      
B. \(\widehat N = 40^\circ .\)    
C. \(\widehat N = 45^\circ .\)                
D. \(\widehat N = 50^\circ .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(BC = 144\;{\rm{cm}}.\)          
B. \(BC = \sqrt {288} \;{\rm{cm}}.\)   
C. \(BC = 288\;{\rm{cm}}.\)  
D. \(BC = 24\;{\rm{cm}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(BC = 12\;{\rm{cm}}.\)       
B. \(BC = 21\;{\rm{cm}}.\) 
C. \(BC = 19\;{\rm{cm}}.\)  
D. \(BC = 17\;{\rm{cm}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP