Câu hỏi:

13/11/2025 53 Lưu

Cho \(\Delta ABC\) cân tại \(A\)\(AB = 12\;{\rm{cm, }}BC = 6\;{\rm{cm}}{\rm{.}}\) Gọi \(D\) là trung điểm của \(BC.\) Gọi \(E\) là điểm thuộc tia đối của tia \(DA\) sao cho \(DE = \frac{1}{4}AE.\)

a) \(\Delta ADC\) vuông tại \(D.\)
Đúng
Sai
b) \(AD = \sqrt {135} \;{\rm{cm}}{\rm{.}}\)
Đúng
Sai
c) \(EC = 5\;{\rm{cm}}{\rm{.}}\)
Đúng
Sai
d) Chu vi \(\Delta DEC\) lớn hơn \(12\;{\rm{cm}}{\rm{.}}\)
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Media VietJack

a) Đúng.

\(\Delta ABC\) cân tại \(A\) nên \(AD\) là đường trung tuyến đồng thời là đường cao của \(\Delta ABC.\)

Do đó, \(AD \bot BC\) tại \(D.\) Suy ra, \(\Delta ADC\) vuông tại \(D.\)

b) Đúng.

\(\Delta ABC\) cân tại \(A\) nên \(AC = AB = 12\;{\rm{cm}}.\) Ta có: \(DC = \frac{1}{2}BC = \frac{1}{2} \cdot 6 = 3\;\left( {{\rm{cm}}} \right).\)

Áp dụng định lí Pythagore vào \(\Delta ADC\) vuông tại \(D\) ta có:

\(A{D^2} + D{C^2} = A{C^2}\)

\(A{D^2} = A{C^2} - A{D^2} = {12^2} - {3^2} = 135\)

\(AD = \sqrt {135} \;{\rm{cm}}{\rm{.}}\)

Vậy \(AD = \sqrt {135} \;{\rm{cm}}{\rm{.}}\)

c) Sai.

\(DE = \frac{1}{4}AE\) nên \(DE = \frac{1}{3}AD = \frac{{\sqrt {135} }}{3}\;{\rm{cm}}{\rm{.}}\)

Áp dụng định lí Pythagore vào \(\Delta EDC\) vuông tại \(D\) ta có:

\(E{C^2} = E{D^2} + D{C^2} = {\left( {\frac{{\sqrt {135} }}{3}} \right)^2} + {3^2} = 24\) nên \(EC = \sqrt {24} \;{\rm{cm}}{\rm{.}}\)

d) Sai.

Chu vi \(\Delta DEC\) là: \(P = EC + ED + DC = \sqrt {24} + \frac{{\sqrt {135} }}{3} + 3 \approx 11,8 < 12.\)

Vậy chu vi \(\Delta DEC\) nhỏ hơn \(12\;{\rm{cm}}{\rm{.}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(26\)

Media VietJack 

Kẻ đường cao \(AD\) của tam giác đều \(ABC.\)

tam giác \(ABC\) đều nên \(AD\) là đường cao đồng thời là đường trung tuyến của tam giác đó.

Suy ra \(CD = \frac{1}{2}BC = \frac{1}{2} \cdot 30 = 15\;\left( {{\rm{cm}}} \right).\)

Áp dụng định lí Pythagore vào \(\Delta ADC\) vuông tại \(D\) ta có:

\(A{D^2} + D{C^2} = A{C^2}\)

\(A{D^2} + {15^2} = {30^2}\)

\(A{D^2} = 675\)

\(AD = \sqrt {675} \approx 26\;{\rm{cm}}{\rm{.}}\)

Vậy chiều cao của tam giác \(ABC\) đều khoảng \(26\;{\rm{cm}}{\rm{.}}\)

Lời giải

Đáp án: \(14,1\)

Media VietJack

Vẽ \(\Delta ABC\) như trong hình vẽ trên. Ta có: \(AC = 10\;{\rm{m,}}\;BC = 40 - 30 = 10\;{\rm{m}}{\rm{.}}\)

Áp dụng định lí Pythagore vào \(\Delta ABC\) vuông tại \(C\) ta có:

\(A{B^2} = A{C^2} + B{C^2} = {10^2} + {10^2} = 200\) nên \(AB = \sqrt {200} \approx 14,1\;\left( {\rm{m}} \right).\)

Vậy khoảng cách giữa hai điểm \(A\)\(B\) trong hình vẽ bằng khoảng \(14,1\;{\rm{m}}{\rm{.}}\)

Câu 3

A. \(\widehat A = 90^\circ .\)    
B. \(\widehat A = 80^\circ .\)  
C. \(\widehat A = 100^\circ .\)    
D. \(\widehat A = 110^\circ .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(BC = 12\;{\rm{cm}}.\)       
B. \(BC = 21\;{\rm{cm}}.\) 
C. \(BC = 19\;{\rm{cm}}.\)  
D. \(BC = 17\;{\rm{cm}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(BC = 144\;{\rm{cm}}.\)          
B. \(BC = \sqrt {288} \;{\rm{cm}}.\)   
C. \(BC = 288\;{\rm{cm}}.\)  
D. \(BC = 24\;{\rm{cm}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho \(\Delta ABC\) vuông tại \(A\) có chu vi bằng \(48\;{\rm{cm}}\)\(\frac{{AB}}{{AC}} = \frac{3}{4}.\)

a) \(\frac{{BC}}{5} = \frac{{AB}}{4}.\)
Đúng
Sai
b) \(\frac{{AB}}{4} = \frac{{AC}}{3} = \frac{{BC}}{5} = 2.\)
Đúng
Sai
c) \(BC = 20\;{\rm{cm}}{\rm{.}}\)
Đúng
Sai
d) Diện tích \(\Delta ABC\) bằng \(96\;{\rm{c}}{{\rm{m}}^{\rm{2}}}.\)
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP