Câu hỏi:

13/11/2025 34 Lưu

Cho \(\Delta ABC\) vuông tại \(A\)\(\Delta MNP\) vuông tại \(P.\) Để \(\Delta ABC \sim \Delta PMN\) thì cần thêm điều kiện

A. \(\widehat A = \widehat M.\)       
B. \(\widehat B = \widehat N.\) 
C. \(\widehat A = \widehat N.\)                  
D. \(\widehat B = \widehat M.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

\(\Delta ABC\) vuông tại \(A\) nên \(\widehat A = 90^\circ .\)\(\Delta MNP\) vuông tại \(P\) nên \(\widehat P = 90^\circ .\)

\(\widehat A = \widehat P = 90^\circ \) nên để \(\Delta ABC \sim \Delta PMN\) thì cần thêm điều kiện: \(\widehat B = \widehat M\) hoặc \(\widehat C = \widehat N.\)

Do đó, chọn đáp án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(90\)

\(\Delta MNA\) và \(\Delta ABH\) có: \(\widehat N = \widehat {ABH} = 90^\circ ;\;\,\frac{{MN}}{{AB}} = \frac{{AM}}{{AH}}\;\,\left( { = \frac{3}{2}} \right).\) Suy ra: \(\Delta MNA \sim \Delta ABH\) (c.g.c).

Do đó, \(\widehat M = \widehat {BAH}.\)

Lại có: \(\widehat M + \widehat {MAN} = 90^\circ \) nên \(\widehat {BAH} + \widehat {MAN} = 90^\circ .\) Vậy \(\widehat {MAH} = 90^\circ .\)

Câu 2

a) \(\Delta AHM \sim \Delta ABH.\)
Đúng
Sai
b) \(A{H^2} = AN \cdot AC.\)
Đúng
Sai
c) \(AM \cdot AB > AN \cdot AC.\)
Đúng
Sai
d) \(\Delta ANM \sim \Delta ABC.\)
Đúng
Sai

Lời giải

Media VietJack

a) Đúng.

\(M,\;\,N\) lần lượt là hình chiếu của \(H\) trên \(AB,\;\,AC\) nên \(HM \bot AB;\;\,HN \bot AC.\)

Do đó, \(\widehat {AMH} = \widehat {HMB} = \widehat {ANH} = \widehat {HNC} = 90^\circ .\)

\(AH\) là đường cao của tam giác \(ABC\) nên \(AH \bot BC.\) Suy ra \(\widehat {AHB} = \widehat {AHC} = 90^\circ .\)

\(\Delta AHM\)\(\Delta ABH\) có: \(\widehat {AMH} = \widehat {AHB} = 90^\circ ;\;\,\widehat {HAM}\) chung nên \(\Delta AHM \sim \Delta ABH\) (g.g).

b) Đúng.

\(\Delta AHN\)\(\Delta ACH\) có: \(\widehat {ANH} = \widehat {AHC} = 90^\circ ;\;\,\widehat {HAN}\) chung nên \(\Delta AHN \sim \Delta ACH\) (g.g).

Do đó, \(\frac{{AH}}{{AC}} = \frac{{AN}}{{AH}}.\) Suy ra \(A{H^2} = AN \cdot AC.\)

c) Sai.

Theo a) ta có: \(\Delta AHM \sim \Delta ABH\)  (g.g) nên \(\frac{{AM}}{{AH}} = \frac{{AH}}{{AB}}.\) Suy ra \(AM \cdot AB = A{H^2}.\)

\(A{H^2} = AN \cdot AC\) nên \(AM \cdot AB = AN \cdot AC.\)

d) Đúng.

\(AM \cdot AB = AN \cdot AC\) nên \(\frac{{AM}}{{AC}} = \frac{{AN}}{{AB}}.\)

\(\Delta ANM\) và \(\Delta ABC\) có: \(\frac{{AM}}{{AC}} = \frac{{AN}}{{AB}};\;\,\widehat {NAM} = \widehat {BAC} = 90^\circ \) chung nên \(\Delta ANM \sim \Delta ABC\)(c.g.c).

Câu 3

A. \(\widehat {AMN} = \widehat {ANM}.\)    
B. \(\widehat {AMN} = \widehat C.\) 
C. \(\widehat {AMN} = \widehat B.\)      
D. \(\widehat {ANM} = \widehat C.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\Delta ABC \sim \Delta MNP.\)  
B. \(\Delta ABC \sim \Delta MPN.\)      
C. \(\Delta ABC \sim \Delta NMP.\)            
D. \(\Delta ABC \sim \Delta PMN.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP