Câu hỏi:

13/11/2025 32 Lưu

Cho đoạn thẳng \(MN\) là đoạn thẳng \(AB\) sau khi phóng to với tỉ số 2, đoạn thẳng \(PQ\) là đoạn thẳng \(MN\) sau khi thu nhỏ với tỉ số \(0,25.\) Hỏi độ dài đoạn thẳng \(AB\) gấp bao nhiêu lần độ dài đoạn thẳng \(PQ?\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: \(2\)

Media VietJack

Vì đoạn thẳng \(MN\) là đoạn thẳng \(AB\) sau khi phóng to với tỉ số 2 nên \(MN = 2AB.\)

Vì đoạn thẳng \(PQ\) là đoạn thẳng \(MN\) sau khi thu nhỏ với tỉ số \(0,25\) nên

\(PQ = 0,25MN = 0,25 \cdot 2AB = 0,5AB\) hay \(AB = 2PQ.\)

Vậy độ dài đoạn thẳng \(AB\) gấp 2 lần độ dài đoạn thẳng \(PQ.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) \(OB = 10\;\,{\rm{cm}}{\rm{.}}\)
Đúng
Sai
b) \(\frac{{MN}}{{AB}} = \frac{{MO}}{{OA}} = \frac{{ON}}{{OB}} = 0,5.\)
Đúng
Sai
c) Chu vi tam giác \(OMN\) lớn hơn \(10\;\,{\rm{cm}}{\rm{.}}\)
Đúng
Sai
d) Diện tích tứ giác \(AMNB\) lớn hơn \(20\;\,{\rm{c}}{{\rm{m}}^2}.\)
Đúng
Sai

Lời giải

Media VietJack

a) Đúng.

Áp dụng định lý Pythagore vào \(\Delta OAB\) vuông tại \(A\) ta có:

\(O{B^2} = O{A^2} + A{B^2} = {8^2} + {6^2} = 100,\) suy ra \(OB = 10\;\,{\rm{cm}}{\rm{.}}\)

Vậy \(OB = 10\;\,{\rm{cm}}{\rm{.}}\)

b) Đúng.

Vì đoạn thẳng \(MN\) là hình đồng dạng phối cảnh của đoạn thẳng \(AB\) tâm \(O\) tỉ số \(0,5\) nên

\(\frac{{MN}}{{AB}} = \frac{{MO}}{{OA}} = \frac{{ON}}{{OB}} = 0,5.\)

c) Đúng.

\(\frac{{MN}}{{AB}} = \frac{{MO}}{{OA}} = \frac{{ON}}{{OB}} = 0,5\) nên

\(MN = 0,5 \cdot AB = 3\;\,\left( {{\rm{cm}}} \right),\;\,MO = 0,5 \cdot OA = 4\;\,\left( {{\rm{cm}}} \right),\;\,ON = 0,5 \cdot OB = 5\;\,\left( {{\rm{cm}}} \right).\)

Chu vi tam giác \(OMN\) là: \(OM + ON + MN = 4 + 5 + 3 = 12\;\,\left( {{\rm{cm}}} \right).\)

Vậy chu vi tam giác \(OMN\) lớn hơn \(10\;\,{\rm{cm}}{\rm{.}}\)

d) Sai.

\(\Delta AOB\) có: \(\frac{{MO}}{{OA}} = \frac{{ON}}{{OB}}\) nên \(MN\;{\rm{//}}\;AB\) suy ra tứ giác \(AMNB\) là hình thang.

Lại có: \(\widehat A = 90^\circ \) nên tứ giác \(AMNB\) là hình thang vuông.

Diện tích hình thang \(AMNB\) là: \(\frac{1}{2}\left( {MN + AB} \right) \cdot MA = \frac{1}{2}\left( {3 + 6} \right) \cdot 4 = 18\;\,\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)

Vậy diện tích tứ giác \(AMNB\) nhỏ hơn \(20\;\,{\rm{c}}{{\rm{m}}^2}.\)

Lời giải

Media VietJack

a) Đúng.

\(\Delta {A_1}{B_1}{C_1}\) là hình đồng dạng phối cảnh của \(\Delta ABC\) với tâm \(O\) và tỉ số \(\frac{{{A_1}{B_1}}}{{AB}} = 2\) nên

\(\frac{{{A_1}{B_1}}}{{AB}} = \frac{{{B_1}{C_1}}}{{BC}} = \frac{{{A_1}{C_1}}}{{AC}} = 2.\)

b) Đúng.

\(\frac{{{A_1}{B_1}}}{{AB}} = \frac{{{B_1}{C_1}}}{{BC}} = \frac{{{A_1}{C_1}}}{{AC}} = 2\) nên \({A_1}{B_1} = 2AB = 16\;\,{\rm{m;}}\;\,{B_1}{C_1} = 2BC = 28\;\,{\rm{m;}}\;\,{A_1}{C_1} = 2AC = 22\;\,{\rm{m}}.\)

Chu vi \(\Delta {A_1}{B_1}{C_1}\) là: \(16 + 28 + 22 = 66\;\,\left( {\rm{m}} \right).\) Vậy chu vi tam giác \({A_1}{B_1}{C_1}\) bằng \(66\;\,{\rm{m}}{\rm{.}}\)

c) Sai.

Vì tam giác \({A_2}{B_2}{C_2}\) là hình đồng dạng phối cảnh với tam giác \({A_1}{B_1}{C_1}\) tâm \(I\) và tỉ số đồng dạng \(\frac{{{A_2}{B_2}}}{{{A_1}{B_1}}} = \frac{1}{2}\) nên \(\frac{{{A_1}{B_1}}}{{{A_2}{B_2}}} = \frac{{{B_1}{C_1}}}{{{B_2}{C_2}}} = \frac{{{A_1}{C_1}}}{{{A_2}{C_2}}} = 2.\) Suy ra: \({B_2}{C_2} = \frac{{{B_1}{C_1}}}{2} = 14\;\,\left( {\rm{m}} \right).\) Vậy \({B_2}{C_2} > 10\;\,{\rm{m}}{\rm{.}}\)

d) Đúng.

Theo c) ta có: \({A_2}{B_2} = \frac{{{A_1}{B_1}}}{2} = 8\;\,\left( {\rm{m}} \right);\;\,{A_2}{C_2} = \frac{{{A_1}{C_1}}}{2} = 11\;\,\left( {\rm{m}} \right).\)

\(\Delta ABC\)\(\Delta {A_2}{B_2}{C_2}\) có: \(AB = {A_2}{B_2};\;\,BC = {B_2}{C_2};\;\,AC = {A_2}{C_2}\) nên \(\Delta ABC = \Delta {A_2}{B_2}{C_2}\;\,\left( {{\rm{c}}{\rm{.c}}{\rm{.c}}} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \({A_1}{B_1} = 3AB.\)
B. \({A_1}{B_1} = 4AB.\)   
C. \(AB = 3{A_1}{B_1}.\)  
D. \(AB = 4{A_1}{B_1}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) \(AD = 20\;\,{\rm{cm}}{\rm{.}}\)
Đúng
Sai

b) Hình chữ nhật \(ABCD\) đồng dạng với hình chữ nhật \(MNPQ\) theo tỉ số đồng dạng là 2.

Đúng
Sai
c) \(MQ > 10\;\,{\rm{cm}}{\rm{.}}\)
Đúng
Sai
d) Diện tích hình chữ nhật \(MNPQ\) bằng \(300\;\,{\rm{c}}{{\rm{m}}^2}.\)
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP