Cho \(\Delta ABC\) có \(AB = 2{\rm{ cm,}}\) \(AC = 4{\rm{ cm}}\). Qua \(B\) dựng đường thẳng cắt \(AC\) tại \(D\) sao cho \(\widehat {ABD} = \widehat {ACB}\). Gọi \(AH\) là đường cao \(\Delta ABC\), \(AE\) là đường cao của \(\Delta ABD\).
Quảng cáo
Trả lời:

a) Đúng.
Xét \(\Delta ABD\) và \(\Delta ACB\) có: \(\widehat {ABD} = \widehat {ACB}\) (gt) và \(\widehat {BAD} = \widehat {CAB}\) (góc chung)
Suy ra \(\Delta ABD \sim \Delta ACB\) (g.g)
b) Đúng.
Do \(\Delta ABD \sim \Delta ACB\) (g.g) nên \(\widehat {ADB} = \widehat {ABC}\) (hai góc tương ứng)
c) Sai.
Do \(\Delta ABD \sim \Delta ACB\) nên \(\frac{{AB}}{{AC}} = \frac{{AD}}{{AB}}\) hay \(AD = \frac{{A{B^2}}}{{AC}} = \frac{{{2^2}}}{4} = 1{\rm{ cm}}\).
Lại có: \(DC + AD = AC\) nên \(DC = AC - AD = 4 - 1 = 3{\rm{ cm}}\).
d) Đúng.
Ta có: \(\widehat {ADB} = \widehat {DBC} + \widehat {DCB}\) (tính chất góc ngoài tam giác)
\(\widehat {ABH} = \widehat {ABD} + \widehat {DBC}\).
Mà từ giả thiết có \(\widehat {ABD} = \widehat {ACB}\) nên \(\widehat {ADB} = \widehat {ABH}\).
Xét \(\Delta EDA\) và \(\Delta HBA\), có: \(\widehat {AED} = \widehat {AHB} = 90^\circ \) (gt) và \(\widehat {ADE} = \widehat {ABH}\) (cmt)
Suy ra \(\Delta HBA \sim \Delta EDA\) (g.g)
Suy ra \(\frac{{AB}}{{AD}} = \frac{{AH}}{{EA}} = \frac{{BH}}{{AC}} = \frac{2}{1} = 2\).
Do đó, \(\frac{{{S_{ABH}}}}{{{S_{ADE}}}} = \frac{{AH}}{{EA}}.\frac{{BH}}{{AC}} = 2.2 = 4\) hay \({S_{ABH}} = 4{S_{ADE}}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 9
Áp dụng định lí Pythagore vào tam giác \(ABC\), ta có:
\(A{B^2} + A{C^2} = B{C^2}\) hay \({6^2} + {6^2} = B{C^2}\) nên \(B{C^2} = 72\), suy ra \(BC = \sqrt {72} \).
Áp dụng định lí Pythagore vào tam giác \(BCD\), ta có:
\(B{C^2} + C{D^2} = B{D^2}\) hay \({\left( {\sqrt {72} } \right)^2} + {3^2} = {x^2}\) nên \({x^2} = 81\), suy ra \(x = 9\).
Vậy \(x = 9\).
Lời giải
Đáp án: 52

Từ \(C\) kẻ \(CH \bot AB\) tại \(H\).
Xét tứ giác \(ADCH\) có \(\widehat {ADC} = \widehat {DAH} = \widehat {AHC} = 90^\circ \) nên \(ADCH\) là hình chữ nhật.
Suy ra \(AD = CH = 8{\rm{ cm}}\); \(DC = AH = 14{\rm{ cm}}\).
Lại có, \(AH + HB = AB\), suy ra \(BH = AB - AH = 20 - 14 = 6{\rm{ }}\left( {{\rm{cm}}} \right)\).
Áp dụng định lí Pythagore vào tam giác \(\Delta HCB\), có:
\(H{B^2} + H{C^2} = B{C^2}\)
\({8^2} + {6^2} = B{C^2}\)
\(100 = B{C^2}\) suy ra \(BC = 10{\rm{ cm}}\).
Vậy chu vi tứ giác \(ABCD\) là \(8 + 14 + 10 + 20 = 52{\rm{ cm}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



