Câu hỏi:

13/11/2025 42 Lưu

Tính diện tích tam giác \(AHC\) trong hình dưới đây. (Kết quả viết dưới dạng số thập phân, làm tròn đến hàng phần mười)

Media VietJack

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: 38,1

Áp dụng định lí Pythagore vào tam giác \(ABH\), ta có:

\(A{H^2} + B{H^2} = A{B^2}\)

\(A{H^2} + {4^2} = {8^2}\)

\(A{H^2} = 48\) suy ra \(AH = \sqrt {48} \).

Áp dụng định lí Pythagore vào tam giác \(AHC\), có:

\(A{H^2} + C{H^2} = A{C^2}\)

\(48 + C{H^2} = {13^2}\)

\(C{H^2} = 121\) hay \(CH = 11\).

Do đó, diện tích tam giác \(AHC\)\(\frac{1}{2}.11.\sqrt {48} = \frac{{11\sqrt {48} }}{2} \approx 38,1\).

Vậy diện tích tam giác \(AHC\)\(38,1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: 9

Áp dụng định lí Pythagore vào tam giác \(ABC\), ta có:

\(A{B^2} + A{C^2} = B{C^2}\) hay \({6^2} + {6^2} = B{C^2}\) nên \(B{C^2} = 72\), suy ra \(BC = \sqrt {72} \).

Áp dụng định lí Pythagore vào tam giác \(BCD\), ta có:

\(B{C^2} + C{D^2} = B{D^2}\) hay \({\left( {\sqrt {72} } \right)^2} + {3^2} = {x^2}\) nên \({x^2} = 81\), suy ra \(x = 9\).

Vậy \(x = 9\).

Lời giải

Đáp án: 2,83

Ta có: \(AC = AH + HC = 3 + 1 = 4{\rm{ }}\left( {{\rm{cm}}} \right)\).

Vì tam giác \(ABC\) cân tại \(A\) nên ta có \(AB = AC = 4{\rm{ cm}}\)

• Áp dụng định lí Pythagore vào tam giác \(BHA\), ta có:

\(B{H^2} + H{A^2} = A{B^2}\)

\(B{H^2} = A{B^2} - H{A^2}\)

\(B{H^2} = {4^2} - {3^2}\)

\(B{H^2} = 7\) suy ra \(BH = \sqrt 7 \) cm.

• Áp dụng định lí Pythagore vào tam giác \(BHC\), ta có:

\(H{C^2} + B{H^2} = B{C^2}\)

\({\left( {\sqrt 7 } \right)^2} + {1^2} = B{C^2}\)

\(B{C^2} = 8\) do đó \(BC = \sqrt 8 \approx 2,83\) cm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(9{\rm{\;cm}}.\) 
B. \(10{\rm{\;cm}}.\)
C. \(12{\rm{\;cm}}.\) 
D. \[\sqrt {194} {\rm{\;cm}}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[9{\rm{\;cm}},{\rm{ }}12{\rm{\;cm}},{\rm{ }}15{\rm{\;cm}}.\]
B. \[7{\rm{\;cm}},{\rm{ }}8{\rm{\;cm}},{\rm{ }}10{\rm{\;cm}}.\]
C. \[6{\rm{\;dm}},{\rm{ }}7{\rm{\;dm}},{\rm{ }}9{\rm{\;dm}}.\]
D. \[10{\rm{\;m}},{\rm{ }}13{\rm{\;m}},{\rm{ }}15{\rm{\;m}}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\Delta AMN \sim \Delta ABC.\)              
B. \(\Delta ABC \sim \Delta MNC.\)
C. \(\Delta NMC \sim \Delta ABC.\)       
D. \(\Delta CAB \sim \Delta CMN.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP