Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: 9

Áp dụng định lí Pythagore vào tam giác \(ABC\), ta có:

\(A{B^2} + A{C^2} = B{C^2}\) hay \({6^2} + {6^2} = B{C^2}\) nên \(B{C^2} = 72\), suy ra \(BC = \sqrt {72} \).

Áp dụng định lí Pythagore vào tam giác \(BCD\), ta có:

\(B{C^2} + C{D^2} = B{D^2}\) hay \({\left( {\sqrt {72} } \right)^2} + {3^2} = {x^2}\) nên \({x^2} = 81\), suy ra \(x = 9\).

Vậy \(x = 9\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(9{\rm{\;cm}}.\) 
B. \(10{\rm{\;cm}}.\)
C. \(12{\rm{\;cm}}.\) 
D. \[\sqrt {194} {\rm{\;cm}}.\]

Lời giải

Đáp án đúng là: C

Xét \(\Delta ABC\) vuông tại \(B,\) theo định lí Pythagore ta có:

\(A{C^2} = A{B^2} + B{C^2}\) nên \(B{C^2} = A{C^2} - A{B^2} = {13^2} - {5^2} = 144.\)

Do đó \(BC = 12{\rm{\;cm}}.\)

Câu 2

A. \[9{\rm{\;cm}},{\rm{ }}12{\rm{\;cm}},{\rm{ }}15{\rm{\;cm}}.\]
B. \[7{\rm{\;cm}},{\rm{ }}8{\rm{\;cm}},{\rm{ }}10{\rm{\;cm}}.\]
C. \[6{\rm{\;dm}},{\rm{ }}7{\rm{\;dm}},{\rm{ }}9{\rm{\;dm}}.\]
D. \[10{\rm{\;m}},{\rm{ }}13{\rm{\;m}},{\rm{ }}15{\rm{\;m}}.\]

Lời giải

Đáp án đúng là: A

Ta có:

\({9^2} + {12^2} = 225 = {15^2},\) do đó bộ ba độ dài \[9{\rm{\;cm}},{\rm{ }}12{\rm{\;cm}},{\rm{ }}15{\rm{\;cm}}\] là độ dài ba cạnh của một tam giác vuông.

\({7^2} + {8^2} = 113 \ne {10^2},\) do đó bộ ba độ dài \[7{\rm{\;cm}},{\rm{ }}8{\rm{\;cm}},{\rm{ }}10{\rm{\;cm}}\] không là độ dài ba cạnh của một tam giác vuông.

\({6^2} + {7^2} = 85 \ne {9^2},\) do đó bộ ba độ dài \[6{\rm{\;dm}},{\rm{ }}7{\rm{\;dm}},{\rm{ }}9{\rm{\;dm}}\] không là độ dài ba cạnh của một tam giác vuông.

\({10^2} + {13^2} = 269 \ne {15^2},\) do đó bộ ba độ dài \[10{\rm{\;m}},{\rm{ }}13{\rm{\;m}},{\rm{ }}15{\rm{\;m}}\] không là độ dài ba cạnh của một tam giác vuông.

Vậy ta chọn phương án A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}}\).
Đúng
Sai
b) \(\Delta ABC \sim \Delta ANM\)
Đúng
Sai
c) \(AN = 2,4{\rm{ cm}}\), \(MN = 3,2{\rm{ cm}}\).
Đúng
Sai
d) \(\frac{{{S_{ANM}}}}{{{S_{ABC}}}} = \frac{4}{{25}}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP