Câu hỏi:

16/11/2025 49 Lưu

Cho các mệnh đề sau đây:

\[\left( I \right):\] Nếu tam giác \(ABC\) đều thì \(AB = AC.\)

\[\left( {II} \right):\] Nếu \(a + b\) là số chẵn thì \(a\)\(b\) là các số chẵn.

\[\left( {III} \right):\] Nếu tam giác \(ABC\) có tổng hai góc bằng \(90^\circ \) thì tam giác \(ABC\) vuông cân.

Trong các mệnh đề trên, có bao nhiêu mệnh đề đúng?

A. 0.                             
B. 3.                             
C. 2.                                              
D. \(1\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

+) Nếu tam giác \(ABC\) đều thì \(AB = AC = BC\). Do đó \(\left( I \right)\) là mệnh đề đúng.

+) Ta có nếu \(a = 3,b = 5\) là các số lẻ vẫn thỏa mãn \(a + b = 3 + 5 = 8\) chẵn. Do đó \(\left( {II} \right)\) là mệnh đề sai.

+) Nếu tam giác \(ABC\) có tổng hai góc bằng \(90^\circ \) thì tam giác \(ABC\) vuông. Do đó \(\left( {III} \right)\) là mệnh đề sai.

Vậy có duy nhất một mệnh đề đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(2a\);                        
B. \(a\sqrt 3 \);          
C. \(2a\sqrt 3 \);   
D. \(\frac{{a\sqrt 3 }}{2}\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Hướng dẫn giải  Đáp án đúng là: C (ảnh 1)

Xét tam giác \(ABC\)\(AH\) là đường cao.

Ta có \(\overrightarrow {AB} + \overrightarrow {AC} = 2\overrightarrow {AH} \) vậy \(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right| = \left| {2\overrightarrow {AH} } \right| = 2AH\)

Xét tam giác \(AHB\) vuông tại \(H\)\(AB = 2a,\,BH = a\)

Áp dụng định lí Pitago ta có:

 \(\begin{array}{l}A{H^2} = A{B^2} - B{H^2} = {\left( {2a} \right)^2} - {a^2} = 3{a^2}\\ \Rightarrow AH = a\sqrt 3 \end{array}\)

Vậy \(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right| = 2a\sqrt 3 \).

Câu 2

A. \(\left| {\overrightarrow {AO} } \right| = \frac{{a\sqrt 3 }}{2}\)                                      
B. \(\left| {\overrightarrow {OA} } \right| = a\)                 
C. \(\left| {\overrightarrow {OA} } \right| = \left| {\overrightarrow {OB} } \right|\)                                    
D. \(\left| {\overrightarrow {OA} } \right| = \frac{{a\sqrt 2 }}{2}\)

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Hướng dẫn giải  Đáp án đúng là: A (ảnh 1)

\(\widehat A = 60^\circ \) nên \(\Delta ABC\) đều nên ta có \(A{O^2} = A{B^2} - B{O^2} = {a^2} - {\left( {\frac{a}{2}} \right)^2} = \frac{{3{a^2}}}{4}\)

\( \Rightarrow \left| {\overrightarrow {AO} } \right| = AO = \frac{{a\sqrt 3 }}{2}\).

Câu 3

A. \(\overrightarrow {BP} \);                          
B. \(\overrightarrow {MN} \);                             
C. \(\overrightarrow {CP} \);                              
D. \(\overrightarrow {PA} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Hai vectơ cùng phương nếu giá của chúng song song hoặc trùng nhau;
B. Hai vectơ được gọi là bằng nhau nếu độ dài của chúng bằng nhau;
C. Giá của vectơ là đường thẳng vuông góc với vectơ đó;
D. Vectơ không là vectơ có độ dài bằng mọi vectơ.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[I\left( { - \frac{b}{{2a}};\,\frac{\Delta }{{4a}}} \right)\];                                                   
B. \[I\left( { - \frac{b}{a};\, - \frac{\Delta }{{4a}}} \right)\];
C. \[I\left( { - \frac{b}{{2a}};\, - \frac{\Delta }{{4a}}} \right)\];                                                   
D. \[I\left( {\frac{b}{{2a}};\,\frac{\Delta }{{4a}}} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP