Câu hỏi:

16/11/2025 9 Lưu

Cho hàm số \(f\left( x \right) = 2x - 3\). Kết luận nào sau đây đúng?

A. \(f\left( 1 \right) = 2\);                                                                           
B. Hàm số đồng biến trên \(\mathbb{R}\);
C. Hàm số nghịch biến trên \(\mathbb{R}\).
D. Tập xác định của hàm số là \(D = \left( {\frac{3}{2};\, + \infty } \right)\);          

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Xét đáp án A: ta có \(f\left( 1 \right) = 2.1 - 3 = - 1\) đáp án A sai.

Xét đáp án B: Xét hàm số \(f\left( x \right) = 2x - 3\). Hàm số có tập xác định là \(\mathbb{R}\).

Lấy \({x_1};\,{x_2}\) là hai số tuỳ ý sao cho \({x_1} < {x_2}\) ta có:

\({x_1} < {x_2} \Rightarrow 2{x_1} < 2{x_2} \Rightarrow 2{x_1} - 3 < 2{x_2} - 3 \Rightarrow f\left( {{x_1}} \right) < f\left( {{x_2}} \right)\)

Suy ra hàm số đồng biến trên \(\mathbb{R}\).

Suy ra đáp án B đúng, đáp án C sai.

Đáp án D sai vì tập xác định của hàm số là \(\mathbb{R}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Gọi số tiền mà doanh nghiệp A dự định giảm giá là \(x\) ( triệu đồng) \(\left( {0 \le x \le 4} \right)\).

Tiền lãi khi bán được một xe là: \(31 - x - 27 = 4 - x\)(triệu đồng).

Số lượng xe bán được khi đã giảm giá là: \(600 + 200x\) (xe).

Lợi nhuận cửa hàng thu được là: \(\left( {600 + 200x} \right)\left( {4 - x} \right) = - 200{x^2} + 200x + 2\,\,400\)(triệu đồng).

Xét hàm số bậc hai \(y = - 200{x^2} + 200x + 2\,\,400\), có:

Đỉnh \(I\) có tọa độ: \({x_I} = - \frac{b}{{2a}} = - \frac{{200}}{{2.\left( { - 200} \right)}} = \frac{1}{2}\); \({y_I} = - \frac{\Delta }{{4a}} = - \frac{{1\,\,960\,\,000}}{{4.\left( { - 200} \right)}} = 2\,\,450\).

Hay \(I\left( {\frac{1}{2};2\,\,450} \right)\)

Ta có bảng biến thiên:

Một doanh nghiệp tư nhân A chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe hon đa Future Fi với chi phí mua một chiếc là 27 triệu đồng và bán ra với giá là 31 triệu đồng. (ảnh 1)

Dựa vào bảng biến thiên ta thấy, hàm số đạt giá trị lớn nhất là \(2\,450\) khi x = \(\frac{1}{2}\).

Vậy doanh nghiệp phải bán với giá \(30,5\) triệu đồng để lợi nhuận thu được là cao nhất.

Câu 2

A. \(\left| {\overrightarrow {AO} } \right| = \frac{{a\sqrt 3 }}{2}\)                                      
B. \(\left| {\overrightarrow {OA} } \right| = a\)                 
C. \(\left| {\overrightarrow {OA} } \right| = \left| {\overrightarrow {OB} } \right|\)                                    
D. \(\left| {\overrightarrow {OA} } \right| = \frac{{a\sqrt 2 }}{2}\)

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Hướng dẫn giải  Đáp án đúng là: A (ảnh 1)

\(\widehat A = 60^\circ \) nên \(\Delta ABC\) đều nên ta có \(A{O^2} = A{B^2} - B{O^2} = {a^2} - {\left( {\frac{a}{2}} \right)^2} = \frac{{3{a^2}}}{4}\)

\( \Rightarrow \left| {\overrightarrow {AO} } \right| = AO = \frac{{a\sqrt 3 }}{2}\).

Câu 4

A. \(2a\);                        
B. \(a\sqrt 3 \);          
C. \(2a\sqrt 3 \);   
D. \(\frac{{a\sqrt 3 }}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A.P¯:"x:x2=x";                                                                           
B. P¯:"x:x2x" ;
C. P¯:"x:x2x";                                                                           
D. P¯:"x:x2=x" .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[A = \left[ { - 2\,;\,11} \right)\];                        
B. \[A = \left[ { - 2\,;\,10} \right]\];                              
C. \[A = \left\{ { - 2; - 1;0;1;2;3;4;5;6;7;8;9;10} \right\}\];                     
D. \[A = \left( { - 2\,;\,11} \right]\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(x \subset A\);       
B. \(\left\{ x \right\} \in A\);                              
C. \(x \in A\);                      
D. \(A \subset \left\{ x \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP