Hai chiếc tàu thuỷ cùng xuất phát từ \(A\) đi thẳng theo hai hướng tạo với nhau một góc 60°. Tàu thứ nhất chạy với tốc độ 30 km/h. Tàu thứ hai đi với vận tốc 40km/h. Hỏi sau 2h hai tàu cách nhau bao nhiêu km?
Câu hỏi trong đề: Bộ 10 đề thi Giữa kì 1 Toán 10 Cánh Diều có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D

Giả sử hai tàu xuất phát từ \(A\) như hình vẽ, tàu thứ nhất sau \(2h\) đi đến \(B\), tàu thứ hai sau \(2h\) đi đến \(C\). Khoảng cách hai tàu lúc này là đoạn \(BC\).
Ta có: sau \(2h\) quãng đường tàu thứ nhất đi được là: \(AB = 2.30 = 60km\)
sau \(2h\) quãng đường tàu thứ hai đi được là: \(AC = 2.40 = 80km\)
Áp dụng định lí cosin ta có:
\(B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A = {60^2} + {80^2} - 2.60.80.\cos 60^\circ \)
\( \Leftrightarrow BC = 20\sqrt {13} \)
Vậy hai tàu cách nhau \(20\sqrt {13} \left( {km} \right)\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: C

Xét tam giác \(ABC\) có \(AH\) là đường cao.
Ta có \(\overrightarrow {AB} + \overrightarrow {AC} = 2\overrightarrow {AH} \) vậy \(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right| = \left| {2\overrightarrow {AH} } \right| = 2AH\)
Xét tam giác \(AHB\) vuông tại \(H\) có \(AB = 2a,\,BH = a\)
Áp dụng định lí Pitago ta có:
\(\begin{array}{l}A{H^2} = A{B^2} - B{H^2} = {\left( {2a} \right)^2} - {a^2} = 3{a^2}\\ \Rightarrow AH = a\sqrt 3 \end{array}\)
Vậy \(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right| = 2a\sqrt 3 \).
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: A

Vì \(\widehat A = 60^\circ \) nên \(\Delta ABC\) đều nên ta có \(A{O^2} = A{B^2} - B{O^2} = {a^2} - {\left( {\frac{a}{2}} \right)^2} = \frac{{3{a^2}}}{4}\)
\( \Rightarrow \left| {\overrightarrow {AO} } \right| = AO = \frac{{a\sqrt 3 }}{2}\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.