Câu hỏi:

16/11/2025 13 Lưu

(1,0 điểm)

Một tháp viễn thông cao \(42\,\,m\) được dựng thẳng đứng trên một sườn dốc \(34^\circ \) so với phương ngang. Từ đỉnh tháp người ta neo một sợi cáp xuống một điểm trên sườn dốc cách chân tháp \(33\,\,m\) (như hình vẽ). Tính chiều dài của sợi dây cáp đó.

Một tháp viễn thông cao \(42\,\,m\) được dự (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Ta có hình vẽ sau:

Một tháp viễn thông cao \(42\,\,m\) được dự (ảnh 2)

Khi đó: \(\widehat {MHN} = 34^\circ \)

\( \Rightarrow \widehat {PMN} = 90^\circ - \widehat {MHN} = 90^\circ - 34^\circ = 56^\circ \)

Áp dụng định lí cosin trong tam giác \(MNP\), có:

\(N{P^2} = M{N^2} + M{P^2} - 2.MN.MP.{\rm{cos}}\widehat {NMP}\)

\( = {33^2} + {42^2} - 2.33.42.{\rm{cos56}}^\circ \)

\( \approx 1302,9\)

\( \Leftrightarrow NP \approx 36,1\).

Vậy chiều dài của sợi dây cáp khoảng \(36,1\,\,m\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Gọi số tiền mà doanh nghiệp A dự định giảm giá là \(x\) ( triệu đồng) \(\left( {0 \le x \le 4} \right)\).

Tiền lãi khi bán được một xe là: \(31 - x - 27 = 4 - x\)(triệu đồng).

Số lượng xe bán được khi đã giảm giá là: \(600 + 200x\) (xe).

Lợi nhuận cửa hàng thu được là: \(\left( {600 + 200x} \right)\left( {4 - x} \right) = - 200{x^2} + 200x + 2\,\,400\)(triệu đồng).

Xét hàm số bậc hai \(y = - 200{x^2} + 200x + 2\,\,400\), có:

Đỉnh \(I\) có tọa độ: \({x_I} = - \frac{b}{{2a}} = - \frac{{200}}{{2.\left( { - 200} \right)}} = \frac{1}{2}\); \({y_I} = - \frac{\Delta }{{4a}} = - \frac{{1\,\,960\,\,000}}{{4.\left( { - 200} \right)}} = 2\,\,450\).

Hay \(I\left( {\frac{1}{2};2\,\,450} \right)\)

Ta có bảng biến thiên:

Một doanh nghiệp tư nhân A chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe hon đa Future Fi với chi phí mua một chiếc là 27 triệu đồng và bán ra với giá là 31 triệu đồng. (ảnh 1)

Dựa vào bảng biến thiên ta thấy, hàm số đạt giá trị lớn nhất là \(2\,450\) khi x = \(\frac{1}{2}\).

Vậy doanh nghiệp phải bán với giá \(30,5\) triệu đồng để lợi nhuận thu được là cao nhất.

Câu 2

A. \(\left| {\overrightarrow {AO} } \right| = \frac{{a\sqrt 3 }}{2}\)                                      
B. \(\left| {\overrightarrow {OA} } \right| = a\)                 
C. \(\left| {\overrightarrow {OA} } \right| = \left| {\overrightarrow {OB} } \right|\)                                    
D. \(\left| {\overrightarrow {OA} } \right| = \frac{{a\sqrt 2 }}{2}\)

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Hướng dẫn giải  Đáp án đúng là: A (ảnh 1)

\(\widehat A = 60^\circ \) nên \(\Delta ABC\) đều nên ta có \(A{O^2} = A{B^2} - B{O^2} = {a^2} - {\left( {\frac{a}{2}} \right)^2} = \frac{{3{a^2}}}{4}\)

\( \Rightarrow \left| {\overrightarrow {AO} } \right| = AO = \frac{{a\sqrt 3 }}{2}\).

Câu 4

A. \(2a\);                        
B. \(a\sqrt 3 \);          
C. \(2a\sqrt 3 \);   
D. \(\frac{{a\sqrt 3 }}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[A = \left[ { - 2\,;\,11} \right)\];                        
B. \[A = \left[ { - 2\,;\,10} \right]\];                              
C. \[A = \left\{ { - 2; - 1;0;1;2;3;4;5;6;7;8;9;10} \right\}\];                     
D. \[A = \left( { - 2\,;\,11} \right]\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(x \subset A\);       
B. \(\left\{ x \right\} \in A\);                              
C. \(x \in A\);                      
D. \(A \subset \left\{ x \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A.P¯:"x:x2=x";                                                                           
B. P¯:"x:x2x" ;
C. P¯:"x:x2x";                                                                           
D. P¯:"x:x2=x" .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP