Trong các cặp số: \(\left( {0;\,\,0} \right);\,\,\,\left( { - 1;\,\,1} \right);\,\,\left( { - 2;\,\,3} \right)\,;\,\,\left( {4;\,\,1} \right)\) có bao nhiêu cặp số là nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}x - 2y \le 1\\2x - y > - 2\end{array} \right.\)?
Câu hỏi trong đề: Bộ 10 đề thi Giữa kì 1 Toán 10 Cánh Diều có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Xét hệ phương trình: \(\left\{ \begin{array}{l}x - 2y \le 1\,\,\,\,\left( 1 \right)\\2x - y > - 2\,\left( 2 \right)\end{array} \right.\)
+) Thay \(x = 0\) và \(y = 0\) lần lượt vào các bất phương trình (1) và (2) trong hệ, ta được:
\(\left( 1 \right) \Leftrightarrow 0 - 2.0 \le 1 \Leftrightarrow 0 \le 1\) (luôn đúng);
\(\left( 2 \right) \Leftrightarrow 2.0 - 0 > - 2 \Leftrightarrow 0 > - 2\) (luôn đúng).
Do đó cặp số \(\left( {0;\,0} \right)\) là nghiệm của hệ bất phương trình đã cho.
+) Thay \(x = - 1\) và \(y = 1\) lần lượt vào các bất phương trình (1) và (2) trong hệ, ta được:
\(\left( 1 \right) \Leftrightarrow - 1 - 2.1 \le 1 \Leftrightarrow - 3 \le 1\) (luôn đúng);
\(\left( 2 \right) \Leftrightarrow 2.\left( { - 1} \right) - 1 > - 2 \Leftrightarrow - 3 > - 2\) (vô lí).
Do đó cặp số \(\left( { - 1;\,1} \right)\)không là nghiệm của hệ bất phương trình đã cho.
+) Thay \(x = - 2\) và \(y = 3\) lần lượt vào các bất phương trình (1) và (2) trong hệ, ta được:
\(\left( 1 \right) \Leftrightarrow - 2 - 2.3 \le 1 \Leftrightarrow - 8 \le 1\) (luôn đúng);
\(\left( 2 \right) \Leftrightarrow 2.\left( { - 2} \right) - 3 > - 2 \Leftrightarrow - 7 > - 2\) (vô lí).
Do đó cặp số \(\left( { - 2;\,3} \right)\) không là nghiệm của hệ bất phương trình đã cho.
+) Thay \(x = 4\) và \(y = 1\) lần lượt vào các bất phương trình (1) và (2) trong hệ, ta được:
\(\left( 1 \right) \Leftrightarrow 4 - 2.1 \le 1 \Leftrightarrow 2 \le 1\) (vô lí);
\(\left( 2 \right) \Leftrightarrow 2.4 - 1 > - 2 \Leftrightarrow 7 > - 2\) (luôn đúng).
Do đó cặp số \(\left( {4;\,1} \right)\) là nghiệm của hệ bất phương trình đã cho.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Xét tam giác \(AHB\) vuông tại \(H\), có:
\(A{B^2} = A{H^2} + H{B^2} = {1^2} + {6^2} = 37\)
\( \Leftrightarrow AB = \sqrt {37} \,\,cm\)
\(\tan ABH = \frac{{AH}}{{BH}} = \frac{1}{6} \Rightarrow \widehat {ABH} \approx 9,5^\circ \).
\( \Rightarrow \widehat {ABC} = 90^\circ - 9,5^\circ = 80,5^\circ \)
\( \Rightarrow \widehat {ACB} = 180^\circ - 80,5^\circ - 44^\circ = 55,5^\circ \)
Áp dụng định lí sin trong tam giác \(ABC\), có:
\(\frac{{AB}}{{\sin \widehat {ACB}}} = \frac{{BC}}{{\sin \widehat {BAC}}} \Leftrightarrow BC = \frac{{AB.\sin \widehat {BAC}}}{{\sin \widehat {ACB}}} = \frac{{\sqrt {37} .\sin 44^\circ }}{{\sin 55,5^\circ }} \approx 5,1\,\,\left( m \right).\)
Vậy chiều cao của cây đèn đường khoảng \(5,1\,\,m\).
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Với vectơ \(\overrightarrow a \) khác \(\overrightarrow 0 \) và một số thực \(k \ne 0\), ta có hai vectơ \(\overrightarrow a ,\,\,k\overrightarrow a \) luôn cùng phương với nhau.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

